• Title/Summary/Keyword: Jointed rock masses

Search Result 45, Processing Time 0.02 seconds

Comparison of Modelling Characteristics of Distinct Element Analysis Based on Implicit and Explicit Algorithm (Implicit 및 explicit 알고리즘에 기초한 개별요소 수치해석 방법의 모델링 특성 비교 연구)

  • 류창하
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.410-417
    • /
    • 2000
  • The distinct element method has been effectively applied to the analysis of stability and behavior of jointed rock masses. In this paper the modelling characteristics of different types of distinct element model were investigated. Arch tunnel examples were chosen to compare the calculation results of two computer codes, NURBM and CBLOCK, where the former is based on implicit algorithm, and the other on explicit one. CBLOCK calculations show that joint properties are very important parameters in the stability analysis and that the joint stiffness ratio associated with joint configuration could be used as an indicator, whereas NURBM differ from that. Some other disagreements were also identified.

  • PDF

A Study on the Flow Characteristics of Groundwater and Grout in Jointed Rock (절리암반내 지하수 및 주입재의 유동특성에 관한 연구)

  • 문현구;송명규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.229-240
    • /
    • 1999
  • The groundwater flow and grout flow in individual rock joint and jointed rock mass are studied using various methods of analysis such as (i) the finite difference method, (ii) channel network analysis and (iii) joint network analysis. The flow behaviour is investigated in two distinguishable scales of observation: one for a rough joint of a laboratory scale having variable aperture, and the other for field- scale rock masses having three sets of intermittent joints. In the former case, the aperture-dependent channel flow is identified for both water and grout flows. The comparison of the flow rate in a rough joint is made between the finite difference analysis and existing analytical solution. In the latter case, the effects of increasing number of joints on the groundwater inflow into a circular opening of various diameters are analyzed using both the joint network method and Goodman's analytic solution. Comparisons are made between the two methods. The boundary effects in the joint network method are discussed. The inhomogeneity of joint network and its impacts on the groundwater inflow are also discussed.

  • PDF

A Study on Effect of Shotcrete Adhesive Strength on Large Section Rock Tunnel Stability (대단면 암반터널의 안정성에 미치는 숏크리트 부착강도의 영향에 관한 연구)

  • Chang, Seok-Bue;Hong, Eui-Joon;Moon, Sang-Jo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.305-311
    • /
    • 2005
  • Shotcrete adhesive strength in large section tunnels in jointed rock masses plays an important role in preventing rock block from falling and shotcrete debonding due to blasting vibration. Nevertheless, it has not been considered as a major factor such as shotcrete compressive strength in design and construction. For this reason, the purpose of this study is to analyze the effect on shotcrete adhesive strength for large-sectioned tunnels. First, the parametric study using numerical model similar to Holmgren's punch-loaded test was executed for various range of adhesive strength. It shows that the shotcrete bearing capacity is linearly proportioned to the adhesive strength between shotcrete layer and blocks. And then, distinct element analysis of a jointed rock tunnel for an adhesive strength of 1 MPa and a conventional fully-bonded condition between the shotcrete layer and the excavation face was compared in order to evaluate the effect of the shotcrete adhesive strength.

  • PDF

A review paper about experimental investigations on failure behaviour of non-persistent joint

  • Shemirani, Alireza Bagher;Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.535-570
    • /
    • 2017
  • There are only few cases where cause and location of failure of a rock structure are limited to a single discontinuity. Usually several discontinuities of limited size interact and eventually form a combined shear plane where failure takes place. So, besides the discontinuities, the regions between adjacent discontinuities, which consist of strong rock and are called material or rock bridges, are of utmost importance for the shear strength of the compound failure plane. Shear behaviour of persistent and non-persistent joint are different from each other. Shear strength of rock mass containing non-persistent joints is highly affected by mechanical behavior and geometrical configuration of non-persistent joints located in a rock mass. Therefore investigation is essential to study the fundamental failures occurring in a rock bridge, for assessing anticipated and actual performances of the structures built on or in rock masses. The purpose of this review paper is to present techniques, progresses and the likely future development directions in experimental testing of non-persistent joint failure behaviour. Experimental results showed that the presence of rock bridges in not fully persistent natural discontinuity sets is a significant factor affecting the stability of rock structures. Compared with intact rocks, jointed rock masses are usually weaker, more deformable and highly anisotropic, depending upon the mechanical properties of each joint and the explicit joint positions. The joint spacing, joint persistency, number of rock joint, angle of rock joint, length of rock bridge, angle of rock bridge, normal load, scale effect and material mixture have important effect on the failure mechanism of a rock bridge.

A Study on Scale Effects in Jointed Rock Mass Properties, and Their Application (절리 암반물성의 크기효과 및 그 적용에 관한 연구)

  • 김창용;문현구
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.147-164
    • /
    • 1997
  • This study has the assumption that scale effects in rock mass properties are atrributed to the discontinuous and inhomogeneous nature of rock masses. In order to escape the general equivalent material approach applied to the concept of representative volume element, this study presents the new method considering irregular i oink geometry and arbitrary numbers of i oink and arbitrary joint orientations. Based on the theoretical approach, this theory is applied to a real engineering project. Showing the property variations with size of rock mass element, various numerical experiments about scale effect are conducted. Particularly, to prove the adequacy of the verification process in scale effect with nomerical method, and to investigate the detailed source of scale effect, 4 models with increas ins number of joints are tested. On the basis of the experimental results, the test results of scale effects in 3-D rock mass are presented. From these experiments the effects of the mechanical properties of rock joints on the scale effects in rock mass strength and elastic constants are discussed. To verify the mechanism of scale effects in jointed rock mass, two models with different j oink geometries are studied.

  • PDF

Modelling the coupled fracture propagation and fluid flow in jointed rock mass using FRACOD

  • Zhang, Shichuan;Shen, Baotang;Zhang, Xinguo;Li, Yangyang;Sun, Wenbin;Zhao, Jinhai
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.529-540
    • /
    • 2020
  • Water inrush is a major hazard for mining and excavation in deep coal seams or rock masses. It can be attributed to the coalescence of rock fractures in rock mass due to the interaction of fractures, hydraulic flow and stress field. One of the key technical challenges is to understand the course and mechanism of fluid flows in rock joint networks and fracture propagation and hence to take measures to prevent the formation of water inrush channels caused by possible rock fracturing. Several case observations of fluid flowing in rock joint networks and coupled fracture propagation in underground coal roadways are shown in this paper. A number of numerical simulations were done using the recently developed flow coupling function in FRACOD which simulates explicitly the fracture initiation and propagation process. The study has demonstrated that the shortest path between the inlet and outlet in joint networks will become a larger fluid flow channel and those fractures nearest to the water source and the working faces become the main channel of water inrush. The fractures deeper into the rib are mostly caused by shearing, and slipping fractures coalesce with the joint, which connects the water source and eventually forming a water inrush channel.

Fracture Behaviors of Jointed Rock Model Containing an Opening Under Biaxial Compression Condition (이축압축 조건에서 공동이 존재하는 유사 절리암반 모델의 파괴 거동)

  • SaGong, Myung;Yoo, Jea-Ho;Park, Du-Hee;Lee, J.S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.17-30
    • /
    • 2009
  • Underground construction such as tunneling can induce damages on the surrounding rock mass, due to the stress concentration of in situ stresses and excessive energy input during construction sequence, such as blasting. The developed damage on the rock mass can have substantial influence on the mechanical and hydraulic behaviors of the rock masses around a tunnel. In this study, investigation on the generation of damage around an opening in a jointed rock model under biaxial compression condition was conducted. The joint dip angles employed are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made using early strength cement and water. From the biaxial compression test, initiation and propagation of tensile cracks at norm to the joint angle were found. The propagated tensile cracks eventually developed rock blocks, which were dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The development of the tensile crack can be explained under the hypothesis that the rock segment encompassed by the joint set is subjected to the developing moment, which can be induced by the geometric irregularity around the opening in the rock model. The experiment results were simulated by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

Numerical Evaluation of the Influence of Joint Roughness on the Deformation Behavior of Jointed Rock Masses (절리면의 거칠기 특성이 정리암반의 거동에 미치는 영향에 대한 수치해석적 연구)

  • 이연규
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.225-236
    • /
    • 2001
  • The roughness of rock joint is one of the most important parameters in developing the shear resistance and the tendency of dilation. Due to the damage accumulated with shearing displacement, the roughness angle is lowered continuously. It is known that dilation, shear strength hardening, and softening are directly related to the degradation of asperities. Much effort has been directed to incorporate the complicated damage mechanism of asperities into a constitutive model fur rock joints. This study presents an elasto-plastic formulation of joint behavior including elastic deformability, dilatancy and asperity surface damage. It is postulated that the plastic portion of incremental displacement 7an be decomposed into contributions from both sliding along the asperity surface and damage of asperity. Numerical cyclic shear tests are presented to illustrate th? performance of the derived incremental stress-displacement relation. A laboratory cyclic shear test is also simulated. Numerical examples reveal that the elasto-plastic joints model is promising.

  • PDF

Numerical investigation of the impact of geological discontinuities on the propagation of ground vibrations

  • Haghnejad, Ali;Ahangari, Kaveh;Moarefvand, Parviz;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.545-552
    • /
    • 2018
  • Blast-induced ground vibrations by a significant amount of explosives may cause many problems for mining slope stability. Geological discontinuities have a significant influence on the transmission of dynamic pressure of detonation and according to their position relative to the slope face may have damaging or useful impacts on the slope stability. In this study, the effect of geological discontinuities was investigated by modelling a slope with geological discontinuities through applying the dynamic pressure in three-dimensional discrete element code (3DEC). The geological discontinuities in four states that generally apperceived in mine slopes are considered. Given the advantages of the pressure decay function defined by some researcher, this type of function was used to develop the pressure-time profile. The peak particle velocities (PPV) values were monitored along an axis by utilization of Fish programming language and the results were used as an indicator to measure the effects. As shown in the discontinuity-free model, PPV empirical models are reliable in rocks lacking discontinuities or tightly jointed rock masses. According to the other results, the empirical models cannot be used for the case where the rock mass contains discontinuities with any direction or dip. With regard to PPVs, when the direction of discontinuities is opposite to that of the slope face, the dynamic pressure of detonation is significantly damped toward the slope direction at the surface of discontinuities. On the other hand, when the discontinuities are horizontal, the dynamic pressure of detonation affects the rock mass to a large distance.