• Title/Summary/Keyword: Jointed mass

Search Result 122, Processing Time 0.02 seconds

Elastic Wave Propagation in Jointed Rock Mass (절리암반에서의 탄성파 전파 특성)

  • Cha, Min-Su;Cho, Gye-Chun;Baak, Seung-Hyoung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.515-520
    • /
    • 2005
  • The behavior of jointed rock mass is much different from that of intact rock due to the presence of joints. Similarly, the characteristics of elastic wave propagation in jointed rock are considerably different from those of intact rock. The propagation of elastic waves in jointed rock is greatly dependent on the state of stress. The roughness, filling materials, and spacing of joints also affect wave propagation in jointed rock. If the wavelength of elastic waves is much larger than the spacing between joints, wave propagation in jointed rock mass can be considered as wave propagation in equivalent continuum. A rock resonant column testing apparatus is made to measure elastic waves propagating through jointed rock in the state of equivalent continuum. Three types of wave, i.e, torsional, longitudinal and flexural waves are monitored during rock resonant column tests. Various roughness and filling materials are applied to joints, and rock columns with various spacings are used to understand how these factors affect wave propagation under a small strain condition. The experimental results suggest that the characteristics of wave propagation in jointed rock mass are governed by the state of stress and influenced by roughness, filling materials and joint spacings.

  • PDF

Analysis of the mechanical properties and failure modes of rock masses with nonpersistent joint networks

  • Wu, Yongning;Zhao, Yang;Tang, Peng;Wang, Wenhai;Jiang, Lishuai
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.281-291
    • /
    • 2022
  • Complex rock masses include various joint planes, bedding planes and other weak structural planes. The existence of these structural planes affects the mechanical properties, deformation rules and failure modes of jointed rock masses. To study the influence of the parameters of a nonpersistent joint network on the mechanical properties and failure modes of jointed rock masses, synthetic rock mass (SRM) technology based on discrete elements is introduced. The results show that as the size of the joints in the rock mass increases, the compressive strength and the discreteness of the rock mass first increase and then decrease. Among them, the joints that are characterized by "small but many" joints and "large and clustered" joints have the most significant impact on the strength of the rock mass. With the increase in joint density in the rock mass, the compressive strength of rock mass decreases monotonically, but the rate of decrease gradually decreases. With the increase in the joint dip angle in rock mass, the strength of the rock mass first decreases and then increases, forming a U-shaped change rule. In the analysis of the failure mode and deformation of a jointed rock mass, the type of plastic zone formed after rock mass failure is closely related to the macroscopic displacement deformation of the rock mass and the parameters of the joints, which generally shows that the location and density of the joints greatly affect the failure mode and displacement degree of the jointed rock mass. The instability mechanism of jointed surrounding rock is revealed.

A study on ultimate bearing capacity of foundations on jointed rock mass (암반 위에 위치한 기초의 지지력 평가에 관한 연구)

  • Choi, Go-Ny;Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.420-429
    • /
    • 2009
  • This study concerns bearing capacity of shallow and deep foundations on jointed rock mass. The main focus of this research lies on getting insight into the applicability of bearing capacity estimation methods developed by other researchers. First, an extensive literature review was performed on previous studies concerning bearing capacity of foundation on jointed rock mass. Second, a parametric study on a number of jointed rock conditions using the finite-element analysis. The results of the analysis were then compared with those computed by the bearing capacity estimation method.

  • PDF

Effect of Joint Spacing on the Earth Pressure Against the Support System in a Jointed Rock Mass

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • This study examined the magnitude and distribution of earth pressure on the support system in a jointed rock mass due to the different joint spacing as well as varying the rock type and joint condition (joint shear strength and joint inclination angle). Based on a physical model test and its numerical simulation, a series of numerical parametric analyses were conducted using a discrete element method. The results showed that the magnitude and distribution of earth pressure were strongly affected by the different joint spacing as well as the rock type and joint condition. In addition, the study results were compared with Peck's earth pressure for soil ground, which indicated that the earth pressure in a jointed rock mass could be considerably different from that in soil ground. The study suggests that the joint spacing as well as the rock type and joint condition are important factors affecting the earth pressure in a jointed rock mass and they should be considered when designing a support system in a jointed rock mass.

A Study on Continous and Discontinous Analysis of Tunnels in Jointed Rock Mass (절리 암반터널의 불연속체해석과 연속체해석에 관한 고찰)

  • Lee Joung-Sun;Kim Si-Kyeok;Kim Do-Hoon;Jung Jae-Dong
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.82-86
    • /
    • 2005
  • Numerical methods to estimate behaviors of jointed rock mass can be roughly divided into two methods : continuous and discontinuous model. Generally, distinct element method(DEM) is applied in discontinuous model, and finite element method(FDM) or finite difference method(FDM) is utilized in continuum model. To predict a behavior of discontinuous model by DEM, it is essential to understand characteristics of joints developed in rock mass through field tests. However, results of field tests can not provide full information about rock mass because field tests are conducted in limited area. In this paper, discontinuous analysis by UDEC and continuous analysis by FLAC are utilized to estimate a behavior of a tunnel in jointed rock mass. For including discontinuous analysis in continuous analysis, joints in rock mass is considered by reducing rock mass properties obtained by RMR and decreasing shear strength of rock mass. By comparing and revising two analysis results, analysis results similar with practical behavior of a tunnel can be induced and appropriate support system is decided.

Study on anchorage effect on fractured rock

  • Wang, Jing;Li, Shu-Cai;Li, Li-Ping;Zhu, Weishen;Zhang, Qian-Qing;Song, Shu-Guang
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.791-801
    • /
    • 2014
  • The effects of anchor on fractured specimens in splitting test are simulated by DDARF method, the results of which are compared with laboratory test results. They agree well with each other. The paper contents also use the laboratory model test. The main research objects are three kinds of specimens, namely intact specimens, jointed specimens and anchored-jointed specimens. The results showed that with the joint angle increased, the weakening effects of jointed rock mass are more obvious. At these points, the rock bolts' strengthening effects on the specimens have become more significant. There is a significant impact on the failure modes of rock mass by the joint and the anchorage.

A Study on Discontinuum Analysis and Continuum Analysis of Tunnels in Jointed Rock Mass (절리발달 암반터널의 불연속체해석과 연속체해석에 관한 고찰)

  • Cho Sun-Kyu;Kim Si-Kyeok;Kim Do-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1089-1094
    • /
    • 2004
  • Numerical methods to estimate behaviors of jointed rock mass can be roughly divided into two method : discontinuous model and continuum model. Generally, distinct element method (DEM) is applied in discontinuous model, and finite element method (FEM) or finite difference method (FDM) is utilized in continuum model. To predict a behavior of discontinuous model by DEM, it is essential to understand characteristics of joints developed in rock mass through field tests. However, results of field tests can not provide full information about rock mass because field tests is conducted in limited area. In this paper, discontinuous analysis by UDEC and continuous analysis by FLAC is utilized to estimate a behavior of a tunnel in jointed rock mass. For including discontinuous analysis in continuous analysis, joints in rock mass is considered by reducing rock mass properties obtained by RMR and decreasing shear strength of rock mass. By comparing and revising two analysis results, analysis results similar with practical behavior of a tunnel can be induced and appropriate support system is decided.

  • PDF

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

Preliminary numerical study on long-wavelength wave propagation in a jointed rock mass

  • Chong, Song-Hun;Kim, Ji-Won;Cho, Gye-Chun;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Non-destructive exploration using elastic waves has been widely used to characterize rock mass properties. Wave propagation in jointed rock masses is significantly governed by the characteristics and orientation of discontinuities. The relationship between spatial heterogeneity (i.e., joint spacing) and wavelength for elastic waves propagating through jointed rock masses have been investigated previously. Discontinuous rock masses can be considered as an equivalent continuum material when the wavelength of the propagating elastic wave exceeds the spatial heterogeneity. However, it is unclear how stress-dependent long-wavelength elastic waves propagate through a repetitive rock-joint system with multiple joints. A preliminary numerical simulation was performed in in this study to investigate long-wavelength elastic wave propagation in regularly jointed rock masses using the three-dimensional distinct element code program. First, experimental studies using the quasi-static resonant column (QSRC) testing device are performed on regularly jointed disc column specimens for three different materials (acetal, aluminum, and gneiss). The P- and S-wave velocities of the specimens are obtained under various normal stress levels. The normal and shear joint stiffness are calculated from the experimental results using an equivalent continuum model and used as input parameters for numerical analysis. The spatial and temporal sizes are carefully selected to guarantee a stable numerical simulation. Based on the calibrated jointed rock model, the numerical and experimental results are compared.

A Numerical Study on the Response of Jointed Rock Mass Due to Thermal Loading of Radioactive Waste (방사성 폐기물의 열하중에 의한 절리암반의 거동에 관한 수치해석적 연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.102-118
    • /
    • 1994
  • Thermomechanical analysis is conducted on the radioactive repository in deep rock mass considering the in-situ stress, excavation and thermal loading of a radioactive waste. Thermomechanical properties of a discontinuous rock mass are estimated by a theoretical method so called sequential analysis. Using the estimated properties as input for finite element analysis, the influence on temperature distribution and thermal stress is analyzed within the scope of 2-dimensional steady state and transient heat transfer and coupled thermal elastic plastic behaviour. Granitic rock mass is taken for this analysis. The analysis is done for two different rock mass conditions, i.e. continuous-homogeneous and highly jointed conditions, for the purpose of comparison. In the case of steady state, the extent of disturbed zone around the storage tunnel due to the heat production of the spent-fuel canister varies depending on the thermomechanical properties of the rock mass. In the case of transient analyses, the response of the jointed rock mass to the thermal loading after radioactive waste disposal varies significantly with time, resulting in dramatic changes in the both size and location of disturbed zone.

  • PDF