• Title/Summary/Keyword: Joint system

Search Result 3,768, Processing Time 0.033 seconds

Design of a Mechanical Joint for Zero Moment Crane By Kriging (크리깅을 이용한 제로 모멘트 크레인에 적용되는 조인트의 설계)

  • Kim, Jae-Wook;Jangn, In-Gwun;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.597-604
    • /
    • 2010
  • This study focuses on the design of a mechanical joint for a zero moment crane (ZMC), which is a specialized loading/unloading system used in a mobile harbor (MH). The mechanical joint is based on the concept of zero moment point (ZMP), and it plays an important role in stabilizing a ZMC. For effective stabilization, it is necessary to ensure that the mechanical joint is robust to a wide variety of loads; further, the joint must allow the structures connected to it to perform rotational motion with two degrees of freedom By adopting a traditional design process, we designed a new mechanical joint; in this design, a universal joint is coupled with a spherical joint, and then, deformable rolling elements are incorporated. The rolling elements facilitate load distribution and help in decreasing power loss during loading/unloading. Because of the complexity of the proposed system, Kriging-based approximate optimization method is used for enhancing the optimization efficiency. In order to validate the design of the proposed mechanical joint, a structural analysis is performed, and a small-scale prototype is built.

A Study on Optimum Spacing of Rail Joint for Personal Rapid Transit(PRT) Track System (소형무인경전철 레일이음매의 적정 간격 산정 연구)

  • Choi, Jung-Youl;Kim, Pil-Soo;Chung, Jee Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.213-220
    • /
    • 2018
  • The objective of this study was to estimate the optimum spacing of rail joint for a personal rapid transit(PRT) track system, and to compare the results with the normal rail and rail joint by performing the finite element analysis(FEA) and field measurements using actual vehicles. Based on the FEA and field measurement results compared, the optimum spacing of the rail joints was calculated to be maximum of 1.20m based on the rail displacement. The vertical displacement of the normal rail was higher than that of the rail joint at a spacing of 1.0m, but it was considered that the vehicle riding performance and serviceability of track would be improved in terms of the stability of the train due to similar to rail defection between normal rail and rail joint. Also, because of the proposed rail joint spacing in this study was longer than the current rail joint spacing, the economic effect would be expected by decreasing the amount of sleepers.

Short-term effects of joint mobilization with versus without voluntary movement in patients with chronic ankle instability: A single-blind randomized controlled trial

  • Kim, Hyunjoong;Song, Seonghyeok;Lee, Sangbong;Lee, Seungwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Objective: Joint mobilization for arthrokinematics altered by the positional fault of chronic ankle instability (CAI) is an effective intervention for stabilization. In this study, we compared the effects of ankle dorsi flexion range of motion (DFROM) and dynamic balance ability (DBA) in CAI patients via passive joint mobilization (PJM), a method traditionally performed in previous studies, and active joint mobilization (AJM), a method that can have a greater effect on cortical excitability with spontaneous movements. Design: Single-blind two-arm randomized controlled trial Methods: A total of 30 participants were registered: 15 each to the PJM and AJM groups. Each participant received a total of 10 intervention sessions, 10 minutes per session, 5 times a week for 2 weeks. PJM used Maitland's mobilization method to apply joint mobilization with talus in the posterior direction and AJM used an angular joint motion to induce patient's voluntary motion of medial malleolus anterior gliding and lateral malleolus posterior gliding, respectively. DFROM of the ankle was measured by using tape and DBA was evaluated by using the balance system. Results: Significant improvement was observed after intervention in both the PJM and AJM groups except for the DBA-anterior and DBA-right variables of the PJM group. There were statistically significant differences between the AJM and PJM groups in the DFROM, DBA-anterior, DBA-posterior, and DBA-right variables. Conclusions: The overall improvement of DFROM and DBA was found to be more effective in joint mobilization including voluntary movement. When it is accompanied by voluntary movement, it further affects the neuromuscular system of the ankle.

Global Minimum-Jerk Trajectory Planning of Space Manipulator

  • Huang Panfeng;Xu Yangsheng;Liang Bin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.405-413
    • /
    • 2006
  • A novel approach based on genetic algorithms (GA) is developed to find a global minimum-jerk trajectory of a space robotic manipulator in joint space. The jerk, the third derivative of position of desired joint trajectory, adversely affects the efficiency of the control algorithms and stabilization of whole space robot system and therefore should be minimized. On the other hand, the importance of minimizing the jerk is to reduce the vibrations of manipulator. In this formulation, a global genetic-approach determines the trajectory by minimizing the maximum jerk in joint space. The planning procedure is performed with respect to all constraints, such as joint angle constraints, joint velocity constraints, joint angular acceleration and torque constraints, and so on. We use an genetic algorithm to search the optimal joint inter-knot parameters in order to realize the minimum jerk. These joint inter-knot parameters mainly include joint angle and joint angular velocities. The simulation result shows that GA-based minimum-jerk trajectory planning method has satisfactory performance and real significance in engineering.

Analysis of Upper Limb Joint Angle of Tennis Forehand Stroke (테니스 포핸드 스트로크의 상지관절각도 분석)

  • Kang, Young-Teak;Seo, Kuk-Woong;Sun, Sheng;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.115-124
    • /
    • 2007
  • The purpose of this study was to analyze the kinematics variables of upper limb joint during forehand stroke by swings patterns. Eight high school tennis players were chosen for the study, who have never been injured for last six months, in Busan. They performed horizontal swing and vertical swing that it was done each five consecutive trial in the condition of square, semi-open and open stance. It was filmed by 6 video camera and used with 3-dimensional motion analyzer system. The following kinematic variables were analyzed in relation to angle of joint(shoulder, elbow and wrist joint). The conclusion were as follow: 1. The angle of right shoulder joint represented all event that both swing were shown similar pattern in swing type and stance pattern. 2. All event in the angle of elbow joint had consistent with that except E2, horizontal and vertical swings in square stance. 3. All event in the angle of wrist joint was show to similar pattern except E2, horizontal and vertical swing in open stance.

Joint Replenishment and Delivery Scheduling in a Supply Chain (공급사슬에서 다품목 일괄구매 및 조달 일정계획에 관한 연구)

  • Cha, Byung-Chul;Moon, Il-Kyeong
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.90-96
    • /
    • 2004
  • In this paper, we consider the joint replenishment problem of a one-warehouse, n-retailer system. We introduce a joint replenishment and delivery strategy of a warehouse and develop a mathematical model based on the proposed strategy. Two efficient algorithms are presented and compared using numerical examples. The proposed strategy is compared with the common cycle strategy for 1,600 randomly generated problems, and has been proven to be superior to the common cycle strategy.

Strength and failure characteristics of the rock-coal combined body with single joint in coal

  • Yin, Da W.;Chen, Shao J.;Chen, Bing;Liu, Xing Q.;Ma, Hong F.
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1113-1124
    • /
    • 2018
  • Geological dynamic hazards during deep coal mining are caused by the failure of a composite system consisting of the rock and coal layers, whereas the joint in coal affects the stability of the composite system. In this paper, the compression test simulations for the rock-coal combined body with single joint in coal were conducted using $PFC^{2D}$ software and especially the effects of joint length and joint angle on strength and failure characteristics in a rock-coal combined body were analyzed. The joint length and joint angle exhibit a deterioration effect on the strength and affect the failure modes. The deterioration effect of joint length of L on the strength can be neglected with a tiny variation at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ between the loading direction and joint direction. While, the deterioration effect of L on strength are relatively large at ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$. And the peak stress and peak strain decrease with the increase of L. Additionally, the deterioration effect of ${\alpha}$ on the strength becomes larger with the increase of L. With the increase of ${\alpha}$, the peak stress and peak strain first decrease and then increase, presenting "V-shaped" curves. And the peak stress and peak strain at ${\alpha}$ of $45^{\circ}$ are the smallest. Moreover, the failure mainly occurs within the coal and no apparent failure is observed for rock. At ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$, the secondary shear cracks generated in or close to the joint tips, cause the structural instability failure of the combined body. Therefore, their failure models present as a shear failure along partial joint plane direction and partially cutting across the coal body or a shear failure along the joint plane direction. However, at ${\alpha}$ of $60^{\circ}$ and L of 10 mm, the "V-shaped" shear cracks cutting across the coal body cause its final failure. While crack nucleations at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ are randomly distributed in the coal, the failure mode shows a V-shaped shear failure cutting across the coal body.

Influence of the implant-abutment connection design and diameter on the screw joint stability

  • Shin, Hyon-Mo;Huh, Jung-Bo;Yun, Mi-Jeong;Jeon, Young-Chan;Chang, Brian Myung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.126-132
    • /
    • 2014
  • PURPOSE. This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (${\alpha}$=0.05). RESULTS. The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION. The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.