• 제목/요약/키워드: Joint of Bolt

검색결과 217건 처리시간 0.036초

Torque Shear형 고장력 볼트 이음부의 피로거동에 관한 실험적 연구 (An Experimental Study on the Fatigue Behavior of Torque Shear Type High Tension Bolted Joints)

  • 장동일;이성욱
    • 한국강구조학회 논문집
    • /
    • 제8권3호통권28호
    • /
    • pp.151-160
    • /
    • 1996
  • The fatigue test under the constant amplitude repeated loading is performed to investigate the fatigue behavior of the Torque Shear type high tension bolted joint which is able to manage the axial force uniformly. From the test results, it's known that the reduction of the axial force of T/S bolt followed by the elasped time is similar to that of the high tension bolts. The difference of relaxation is not occurred according to the position of bolts, the size of the introduced axial force but the effect of the variation of temperature is large. In the reduction of the axial force followed by the cumulation of the fatigue load, the outer bolt is larger than the inner bolt. This result depends on the difference in the distribution of the non-slip zone. The variation of the surface roughness affects the slip and the reduction of the anal force.

  • PDF

Simplified model to study the dynamic behaviour of a bolted joint and its self loosening

  • Ksentini, Olfa;Combes, Bertrand;Abbes, Mohamed Slim;Daidie, Alain;Haddar, Mohamed
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.639-654
    • /
    • 2015
  • Bolted joints are essential elements of mechanical structures and metal constructions. Although their static behaviour is fairly well known, their dynamic behaviour due to shocks and vibrations has been less studied, because of the large size of the finite element models needed for a detailed simulation. This work presents four different simplified models suitable for studying the dynamic behaviour of an elementary bolted joint. Three of them include contact elements to allow sliding of the screw head and the nut on the assembled parts, and the last one allows rotation between screw and nut. A penalty approach based on the Coulomb friction model is used to model contact. The results show that these models effectively represent the dynamic behaviour, with different accuracy depending on the model details. The last model simulates the self loosening of a bolt subjected to transversal vibrations.

F10T 고장력 볼트를 이용한 T-형 플랜지형 구조물의 Prying Action에 따른 정적강도 해석 (The Static Strength Analysis of Prying Action for T-flange Shape Structure Using F10T High Strength Bolt)

  • 박명균;이중원;구본성
    • 한국안전학회지
    • /
    • 제23권4호
    • /
    • pp.19-24
    • /
    • 2008
  • This paper presents and discusses the experimental results on the F10T high strength bolts used in the T-flange joint structure. The experimental works were carried out for the parameters which are flange web thickness, the distance between bolts, prying ratio. The results show that the working stress imposed to bolts decreases as the flange web thickness increases on the other hand the imposed stress to the bolts increases as the distance between two bolts increases. In other words the strength of the T-flange joint increased as the web flange thickness increases and the distance between two bolts decreases. The prying ratio is increased as the distance between two bolts increases and as the flange web thickness decreases However, the degree of stress decrease in flange thickness variation is not that high as the distance variation between two bolts. Finally the equation for predicting the failure stress in T-flange joint structure using F10T high strength bolts was suggested.

접합요소를 이용한 볼트 접합부의 유한요소해석 (Finite Element Analysis of Bolted Connections Using Joint Elements)

  • 변대근;윤성기;박성수
    • 전산구조공학
    • /
    • 제7권2호
    • /
    • pp.139-146
    • /
    • 1994
  • 볼트 접합부의 정확한 해석을 위하여 접합 요소와 볼트 요소 및 쉘 요소를 사용한 방법을 개발하였다. 접합면을 단순하게 이상화시키는 접합 요소와 장력을 갖는 볼트 요소를 도입하였고, 전체적인 계산과정은 2단계, 즉 제안된 방법에 의한 초기 강성의 결정과 뉴턴-랩슨법에 근거하는 호장법을 이용한 비선형 거동의 추적으로 구분하여 행함으로써 계산의 효율성을 증대시켰다. 앵글을 사용한 반강접 접합부와 모멘트 판을 사용한 접합부를 해석하여 기존 실험 및 해석과 비교함으로써 제안한 방법의 정확성과 적용성을 입증하였다. 또한 볼트 접합부의 정확한 해석을 위해서는 접합면에서 발생하는 미끄럼짐의 고려가 반드시 필요하며 접합부를 구성하는 판재의 3차원적인 변형의 해석도 무시할 수 없는 역할을 하는 사실을 보여주었다.

  • PDF

볼트 접합 및 프리스트레스를 적용한 프리캐스트 콘크리트 보-기둥 외부접합부의 내진실험 (Seismic Experiment of Precast Concrete Exterior Beam-Column Joint Using Bolt Type Connection and Prestressing Method)

  • 이동주;이주동;오태수;강현구
    • 콘크리트학회논문집
    • /
    • 제26권2호
    • /
    • pp.125-133
    • /
    • 2014
  • 이 연구에서는 볼트접합 및 프리스트레스를 적용한 프리캐스트 콘크리트 보-기둥 외부접합부의 내진 및 구조적 성능을 평가하였다. 총 5개의 보-기둥 외부접합부 실험체를 제작하고 보 단부에 변위제어 방식으로 반복하중을 가하며 실험을 수행하였다. 이 연구의 결과를 근거로 다음과 같은 결론을 얻을 수 있었다. 완전 건식공법이 적용된 PC 접합부는 완전 습식공법이 적용된 RC 접합부보다 에너지소산이나 핀칭현상에 있어서 불리한 거동을 보였지만 이는 설계과정에서 의도된 현상이며, 횡변형 능력에 있어서는 우수한 결과를 보였다. 또한 층간변위비 4%까지 횡하중 저항성능의 손실이 발생하지 않았고 매설용너트에 항복이 집중되는 메커니즘을 보이는 점으로 미루어 볼 때 개발된 접합부는 외부접합부 횡저항시스템으로서 적합한 것으로 사료된다. 추가적인 프리스트레스는 PC 접합부의 과도한 핀칭현상 방지 및 접합부 균열제어에 효과적이었으며 PC 접합부의 전체적인 내진성능을 향상시켰다.

Bolted T-stubs: A refined model for flange and bolt fracture modes

  • Francavilla, Antonella B.;Latour, Massimo;Piluso, Vincenzo;Rizzano, Gianvittorio
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.267-293
    • /
    • 2016
  • It is well known that, in order to accurately predict the behaviour of steel structures a requirement the definition of the mechanical behaviour of beam-to column joints is of primary importance. This goal can be achieved by means of the so-called component method, which, in order to obtain the whole behaviour of connections, provides to break up joints in basic components of deformability and resistance. One of the main joint components used to model bolted connections is the so-called equivalent T-stub in tension, which is normally used to predict the behaviour of bolted plates in bending starting from the behaviour of the single bolt rows. In past decades, significant research efforts have been devoted to the prediction of the behaviour of bolted T-stubs but, to date, no particular attention has been devoted to the characterization of their plastic deformation capacity. To this scope, the work presented in this paper, taking into account the existing technical literature, proposes a new theoretical model for predicting the whole behaviour up to failure of bolted T-stubs under monotonic loading conditions, including some complexities, such as the bolt/plate compatibility requirement and the bolt fracture, which are necessary to accurately evaluate the ultimate displacement. After presenting the advances of the proposed approach, a comparison between theoretical and experimental results is provided in order to verify its accuracy.

복합재 빔 체결을 위한 체결 홀 위치 최적화 (Optimization of Joint Hole Position Design for Composite Beam Clamping)

  • 조희근
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.14-21
    • /
    • 2019
  • In recent years, the use of composite structures has become commonplace in various fields such as aerospace, architecture, and civil engineering. In this study, A method is proposed to find optimal position of bolt hole for fastening of composite structure. In the case of composites, stress distribution is very complicated, and design optimization based on this phenomenon increases difficulty. In selecting the optimum position of the bolt hole, the response surface method(rsm), which is a method of optimization, was applied. A response surface was created based on design points by multiple finite element analyzes. The position of the bolt hole that minimizes the stress when bolting on the response surface was found. The distribution of the stress at the position of the optimal hole was much lower than that of the initial design. Based on the results of this study, it is possible to increase the design safety factor of the structure by appropriately selecting the position of the bolt hole according to various load types when designing the structure and civil structure.

Numerical analysis on tensile properties of composite hybrid bonded/bolted joints with flanging

  • Cheng, Xiaoquan;Zhang, Jie;Zhang, Jikui;Liu, Peng;Cheng, Yujia;Xu, Yahong
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.265-272
    • /
    • 2018
  • A detailed study was carried out on the tensile properties of the single-lap joint of a steel panel bolted/bonded to a composite laminate with a flanging. Finite element model (FEM) was established to predict the strength and to analyze the damage propagation of the hybrid joints by ABAQUS/Standard, which especially adopted cohesive elements to simulate the interface between the laminate and adhesive. The strength and failure mode predicted by FEM were in good agreement with the experimental results. In addition, three influence factors including adhesive thickness, bolt preload and bolt-hole clearance were studied. The results show that the three parameters have effect on the first drop load of the load-displacement curve, but the effect of bolt-hole clearance is the largest. The bolt-hole clearance should be avoided for hybrid joints.

유한 요소 접촉 해석법에 의한 나사 체결부 설계 개선에 관한 연구 (A parametric study of bolt-nut joints by the method of finite element contact analysis)

  • 이병채;김영곤
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.353-361
    • /
    • 1989
  • 본 논문에서는 유한 요소법을 이용하여 접촉을 고려한 나사 체결 문제를 해석하고 여러 다른 체결조건이 각 나사산에 걸리는 하중 분담율에 미치는 영향을 살펴보고, 이 하중 분담율이 보다 균일화 될 수 있는 체결 조건을 찾고, 또 그때의 응력 분포를 살펴보는 것을 목적으로 한다.

사출성형 섬유강화플라스틱 볼트 연결부의 강도 평가를 위한 실험적 연구 (An Experimental Study for the Strength Evaluation of Bolted Connection in Resin Transfer Molding Fiber Reinforced Polymeric Plastic)

  • 최진우;김선희
    • 도시과학
    • /
    • 제11권2호
    • /
    • pp.25-30
    • /
    • 2022
  • Resin Transfer Molding FRP (RTM FRP) is a fiber reinforced polymeric plastic which is manufactured by applying pressure to fibers, injecting resin into a mold, and then impregnating it. RTM FRP is a new construction material suitable for producing non-continuum structural elements such as sole plate because it has excellent strength and can produce many members in a short time. In this study, experiments were conducted to estimate the capacity of the bolted connection of RTM FRP. First, a tensile test was conducted to confirm the mechanical properties such as the tensile strength of the RTM FRP to be used for the bolted connection experiments. In addition, experiments were conducted on the bolted connection with the thickness of the RTM FRP and the edge distance of the bolt as variables. In the first experiment, F4.8 bolts were used, and shear failure of the bolt occurred before the RTM FRPs were failed. The F4.8 bolt is a general structural bolts used for the sole plate of a bridge bearing, and it was confirmed that the RTM FRP has a higher bold bearing strength than the shear strength of a F4.8 bolt. In the second experiment, G12.9 bolts were used, and shear failure of the bolt and bearing failure of the RTM FRP occurred simultaneously. In addition, as the thickness of the RTM FRP and the edge length of the bolt increased, the strength of the joint increased. When analogized with the bearing fracture equation of steel plate, the bolted connection of RTM FRP showed a bearing strength coefficient of 0.420 to 0.549 compared to the tensile strength, and it is considered that further research is needed.