• Title/Summary/Keyword: Joint motion

Search Result 2,178, Processing Time 0.036 seconds

A Kinematical Analysis of Forward Handspring Motion (핸드스프링 동작의 운동학적 분석)

  • Bae, Nam-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.89-100
    • /
    • 2003
  • In this research was to analyze 3-D kinematics variables for handspring of basic motion in the heavy gymnastics in order to investigate kinematical difference between expert and novice. Therefore, the purpose of this research was provide quantitative information, systematic provision, rules, establishment of basic skill for improving skill and teaching athletes. And in the research, results were as followings. 1. In the time variables, total time was that expert took 0.745sec and novice took 0.829sec, and as duration time of each event, expert was faster than novice in the all motion event except till second event of the preparation motion. 2. In the center of body variables, vertical direction variables, the displacement of body center hight was that expert showed 61.26% and novice showed 54.48% in the third event of all motion, also all event were showed expert was higher displacement than novice except first of event in preparatory stage. 3. In the angle displacement of main joint, the right direction was that expert showed 154.12degree and novice showed 174.85degree and the left direction was that expert showed 159.29degree and novice showed 171.46degree In the second event of main joint curved point at the same time hand was reached floor. In the angle displacement of knee joint in the third event of all motion, expert showed 155.25degree and novice showed 154.00degree In right, and expert showed 155.24degree and novice showed 154.55degree in left. In this result, both were same motion type. In the angle displacement of hip joint in the third event of the all motion, expert showed 142.80degree and novice showed 134.17degree in right, and expert showed 140.28degree and novice showed 144.94degree in left. In this result, motion pattern of expert was same both sides, but novice was different. According to the results, to increase efficiency of motion and aesthetic effect in the all motion, it should stretch displacement and height of body center and make similarly angle of right and left joint.

Development of Three-Dimensional Contact Model of Human Knee Joint During Locomotion (보행 중 인체 슬관절의 3차원 접촉 모델 개발)

  • Kim, Hyo-Shin;Park, Seong-Jin;Mun, Joung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.182-189
    • /
    • 2005
  • The human knee joint is the intermediate joint of the lower limb that is the largest and most complex joint in the body. Understanding of joint-articulating surface motion is essential for the joint wear, stability, mobility, degeneration, determination of proper diagnosis and so on. However, many studies analyzed the passive motion of the lower limb because of the skin marker artefact and some studies described medial and lateral condyle of a femur as a simple sphere due to the complexity of geometry. Thus, in this paper, we constructed a three-dimensional geometric model of the human knee from the geometry of its anatomical structures using non-uniform B-spline surface fitting as a study for the kinematic analysis of more realistic human knee model. In addition, we developed and verified 6-DOF contact model of the human knee joint using $C^2$ continuous surface of the inferior region of a femur, considering the relative motion of shank to thigh during locomotion.

Inverse dynamic analysis of flexible robot arms with multiple joints (다관절 유연 로보트 팔의 역동력학 해석)

  • 김창부;이승훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.254-259
    • /
    • 1992
  • In this paper, we propose an optimal method for the tracking a trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint equations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation of flexible planner manipulator is presented.

  • PDF

Joint disturbance torque analysis for independent joint controlled robots and its application in optimal path placement (독립관절제어 로봇의 관절외란해석과 최적경로위치 문제의 해법)

  • Choi, Myung-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.342-348
    • /
    • 1998
  • A majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is greatly influenced by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and hence makes the high speed - high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2 DOF planar robot, the conditions for the minimum and maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solution to the optimal path placement problem is propose that minimizes the joint disturbance torque during a straight line motion. The proposed method is illustrated using computer simulation. The proposed solution method can be applied to a class of robots that are controlled by independent joint servo control, which includes the vast majority of industrial robots.

  • PDF

Are there laterality differences in passive flexion and extension of the proximal limb joints in working Siberian Husky dogs?

  • Susan Soper;Sally Charlton;Adrian Hunnisett
    • Korean Journal of Veterinary Research
    • /
    • v.64 no.3
    • /
    • pp.22.1-22.8
    • /
    • 2024
  • Differences between left and right-side joint range of motion may affect canine locomotive ability and movement. Passive range of motion (PROM) joint measurement provides the limits that a particular joint can move in its physiological planes of motion without influence of muscle activity. To compare left and right-side flexion and extension of the glenohumeral, humeroulnar/humeroradial, coxofemoral and femorotibial joints and for laterality PROM differences. Siberian Husky dogs were selected (n = 18), mixed gender, aged (1.4-11.8) years living and working together. Goniometry measured joint PROM, a validated, non-invasive method. Dogs were conscious and placed in standing position. Triplicate measures of joint flexion and extension were taken bilaterally of each dog for afore-mentioned joints. Median values of triplicate measures were computed. Paired t-tests compared laterality of joint PROM, gender, age (< 6 vs. ≥ 6 years) effects. Inferential symmetry indices [SI] were calculated. For all joints, there was no significant difference (p > 0.05) between left and right-side flexion and extension measures nor between genders. Age (< 6 vs. ≥ 6 years) had a significant effect on right hip flexion (p < 0.001); both left and right-side shoulder flexion (p < 0.001); elbow flexion (p = 0.001 and p < 0.001); hip extension (p = 0.02 and p < 0.001) respectively. The shoulder joint showed greatest PROM asymmetry (SI = 3.63%). Bilateral PROM measures are important to consider in joint movement and assessment. These results warrant further investigation with larger cohorts of defined age groups.

Spatio-temporal video segmentation using a joint similarity measure (결합 유사성 척도를 이용한 시공간 영상 분할)

  • 최재각;이시웅;조순제;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1195-1209
    • /
    • 1997
  • This paper presents a new morphological spatio-temporal segmentation algorithm. The algorithm incorporates luminance and motion information simultaneously, and uses morphological tools such as morphological filtersand watershed algorithm. The procedure toward complete segmentation consists of three steps:joint marker extraction, boundary decision, and motion-based region fusion. First, the joint marker extraction identifies the presence of homogeneours regions in both motion and luminance, where a simple joint marker extraction technique is proposed. Second, the spatio-temporal boundaries are decided by the watershed algorithm. For this purposek, a new joint similarity measure is proposed. Finally, an elimination ofredundant regions is done using motion-based region function. By incorporating spatial and temporal information simultaneously, we can obtain visually meaningful segmentation results. Simulation results demonstratesthe efficiency of the proposed method.

  • PDF

Measurement on range of virtual hip and lower limb joints for young male students (한국 대학생의 가상 hip 관절과 하지관절의 동작범위 측정)

  • 기도형
    • Journal of the Ergonomics Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.125-135
    • /
    • 1996
  • The purpose of this research is to measure range of virtual hip joint and lower limb joints motion such as the hip, knee and ankle joints for 47 young male students. The results of ANOVA revealed that anthropometric dimensions including weight and stature did not show any significant effects on the range of virtual hip joint and lower limb joints motion and the range of motion with two degrees of freedom at the shoulder, virtual hip and hip joints. Anthropometric dimensions such as age, weight, statuire, arm length, shoulder height and leg length were found to be lowly correlated with the range of virtual hip joint and lower limb joints motion. It is expected that the data on the range of joint motion suggested in this study can be used as a valuable input data when designing workplace, predicting human posture and reach volume, etc.

  • PDF

Redundant Robot Control by Neural Optimization Networks (신경망 최적화 회로에 의한 여유자유도를 갖는 로보트의 제어)

  • 현웅근;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.638-648
    • /
    • 1990
  • An effective resolved motion control method of redundant manipulators is proposed to minimize the energy consumption and to increase the dexterity while satisfying the physical actuator constraints. The method employs the neural optimization networks, where the computation of Jacobian matrix is not required. Specifically, end effector movement resulting from each joint differential motion is first separated into orthogonal and tangential components with respect to a given desired trajectory. Then the resolved motion is obtained by neural optimization networks in such a way that 1) linear combination of the orthogonal components should be null 2) linear combination of the tangential components should be the differential length of the desired trajectory, 3) differential joint motion limit is not violated, and 4) weighted sum of the square of each differential joint motion is minimized. Here the weighting factors are controlled by a newly defined joint dexterity measure as the ratio of the tangential and orthogonal components.

  • PDF

Effects of Floss Bands on Ankle Joint Range of Motion and Balance Ability

  • Moon, Byoung-Hyoun;Kim, Ji-Won
    • Physical Therapy Korea
    • /
    • v.29 no.4
    • /
    • pp.274-281
    • /
    • 2022
  • Background: The range of motion (ROM) and balance ability of the ankle joint affect the stability of the ankle and prevent injuries or hurts from falling. In the clinical tests conducted recently, the floss band is widely used to enhance the range of joint motion and exercise performance, and there are many studies that have applied it to ankle joint increasing dorsi flexion (DF) angle. Objects: This study compared the effects on the range of ankle motion and static/dynamic balance ability of the ankle through three conditions (before floss band intervention, after floss band intervention, and after active exercise intervention) for adults. Methods: One intervention between floss band and active exercise was applied randomly and another intervention was applied the next day. After each intervention, the ROM of the ankle joints and the static balance was checked by measuring conducting one leg test. And the dynamic balance was checked by conducting a Y-balance test. Results: In the case of DF, the range of joint motion showed a significant increase after floss band intervention compared to before floss band intervention (p < 0.05). Static balance ability showed a significant increase after the intervention of floss band and active exercise compared to before the intervention of floss band (p < 0.05). The dynamic balance ability showed a significant increase after the intervention of the floss band compared to before intervention of the floss band and after active exercise intervention (p < 0.05). Conclusion: Based on these results, it was confirmed that the application of floss band to the ankle joint increases DF and improves the static and dynamic balance ability. Based on this fact, we propose the application of a floss band as an intervention method to improve the ROM of the ankle joint and improve the stability of the ankle in clinical field.

Reliability of the Joint Neutral Position and Measurement Methods of the Ankle Joint Complex Range of Motion (발목관절 복합체의 가동범위 측정을 위한 중립위치와 측정방법의 신뢰도)

  • Hong, Wan-Sung;Kim, Gi-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.4
    • /
    • pp.45-51
    • /
    • 2011
  • Purpose: To determine the correct measurement methods of the ankle joint complex range of motion for measuring the neutral position and evaluate the rater reliability. In addition, the impact of training on the rater reliability was also assessed. Methods: The subjects were eleven healthy women, who were evaluated by two physical therapists and one physical therapist recorded the results of the study. Standard goniometer was used as the measurement tool. The ankle and subtalar joint neutral position and the active range of motion of the ankle and subtalar joint were measured. Intra-rater reliability and inter-rater reliability measures were analyzed with intraclass correlation coefficients. Results: Intra-rater reliability and inter-rater reliability ranged from high to medium for the neutral position of the ankle joint complex. Intra-rater reliability for dorsiflexion and plantarflexion measurements was medium, while the inter-rater reliability was high. The range of motion of the subtalar joint was measured, and the intra-rater reliability and inter-rater reliability were low and medium, respectively Also, the intra-rater reliability was increased with formal training of the measurement techniques. Intra-rater reliability was reduced in case the raters had not undertaken the training. Conclusion: In summary, the results obtained with the measurement tools and joint measurement of position, indicate the consistency of repeated measurements made by the same observers. Under the same circumstances along with repetition of the same measurement technique during training caused an increase in the rater reliability of formally trained raters.