• Title/Summary/Keyword: Joint kinematics

Search Result 428, Processing Time 0.02 seconds

Locomotion of Dog-like Quadruped Robots: Walk and Trot (견형 4족 로봇의 위치 이동: 걷기 및 속보)

  • Lim, Seung-Chul;Kim, Kwang-Han
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.51-59
    • /
    • 2011
  • This paper is concerned with locomotion of dog-like quadruped robots that can adapt to various terrains, mainly dealing with implementation methods and characteristics of static and dynamic gaits. To this end, a 12-DOF robot is built in house, motional trajectories of its body and feet are generated mimicking biological life, and the corresponding leg joint angles are analytically obtained by inverse kinematics. Such joint angle data are then applied to the robot's ADAMS model for computer simulations so that the planned walk and trot gaits are both confirmed dynamically stable. However, contrary to the simulation results, previous trot patterns showed unstable behavior during experiments. This problem led us to analyze the reason, and in the course we discovered the importance of maximally utilizing the concept of WSM rather than ZMP and therefore reducing the gait period to secure the stability of dynamic gaits such as trot.

Three-Dimensional Sheet Modeling Using Relative Coordinate (상대 좌표를 이용한 종이류 모델링 기법)

  • Cho Heui Je;Bae Dae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.247-252
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

Study on a Simulator for Generating Side Walking Path of the Biped Walking Robot (이족보행로봇의 횡보행 경로생성을 위한 시뮬레이터 연구)

  • Choi, Hyeung-Sik;Jeon, Chang-Hoon;Kang, Jin-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1285-1295
    • /
    • 2008
  • A research on a simulator for a side walking path of a 16 degree-of-freedom (d.o.f) biped walking robot(BWR) which is composed of 4 d.o.f upper-part body and 12 d.o.f lower-part of the body is presented. For generation of stable side walking motion, the kinematics, dynamics and the zero moment of point(ZMP) of the BWR were analyzed analytically and included in the simulator. To operate the motion simulator for stable side walking of the BWR, a graphic user interface program was developed which needs inputs for the side distance between legs, base joint angle, walking type, and walking velocity. The simulator was developed to generate joint angle data of legs for side walking, and the data are transmitted to the BWR for stable side walking. In the simulator, a new path function for smooth walking motion was proposed and applied to the simulator and actual motion of a BWR. Also for actual side walking, an algorithm for estimating backlashes of the actuating joint motors was proposed and included in the simulator. To validate the performance of the proposed motion simulator, the simulator was operated and its side walking data of the simulator were generated for a period of side walking.

Experimental Study of the Robot Arm Applying the Gravity Compensator (중력보상기를 적용한 로봇 팔의 실험적 연구)

  • Choi, Hyeung-Sik;Seo, Hae-Yong;Uhm, Tai-Woong;Yoon, Jong-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.60-67
    • /
    • 2011
  • In this paper, the structure of a gravity compensator(GC) was studied, and the 6-axis robot manipulator which is newly developed by applying the GC is presented to improve the torque performance and repeatability error of the robot joint. The kinematics analysis on the robot was presented. Also, experiments of the performance of the joint actuator of robot adopting the gravity compensator were presented by the GC to $1^{st}$ and $2^{nd}$ joints of the robot arm. According to the experiment results, it was validated that the position errors and load torque of the robot joint actuator adopting the GC are reduced significantly.

A Study on Kinematics and Dynamics Analysis of Vertical Articulated Robot with 6 axies for Forging Process Automation in High Temperatures Environments (고온 환경 단조 공정자동화를 위한 6축 수직다관절 로봇의 기구학 및 동특성 해석에 관한 연구)

  • Jo, Sang-Young;Kim, Min-Seong;Koo, Young-Mok;Won, Jong-Beom;Kang, Jeong-Seok;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • In general, articulated robot control technology is limited to the design of robot arm control systems considering each joint of the robot joint as a simple servomechanism. This method describes the varying dynamics of a manipulator inadequately because it neglects the motion and configuration of the whole arm mechanism. The changes of the parameters in the controlled system are significant enough to render conventional feedback control strategies ineffective. This basic control system enables a manipulator to perform simple positioning tasks such as in the pock and place operation. However, joint controllers are severely limited in precise tracking of fast trajectories and sustaining desirable dynamic performance for variations of payload and parameter uncertainties. In many servo control applications the linear control scheme proposes unsatisfactory, therefore, a need for nonlinear techniques that increasing. for Forging process automation.

Data-Driven Kinematic Control for Robotic Spatial Augmented Reality System with Loose Kinematic Specifications

  • Lee, Ahyun;Lee, Joo-Haeng;Kim, Jaehong
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.337-346
    • /
    • 2016
  • We propose a data-driven kinematic control method for a robotic spatial augmented reality (RSAR) system. We assume a scenario where a robotic device and a projector-camera unit (PCU) are assembled in an ad hoc manner with loose kinematic specifications, which hinders the application of a conventional kinematic control method based on the exact link and joint specifications. In the proposed method, the kinematic relation between a PCU and joints is represented as a set of B-spline surfaces based on sample data rather than analytic or differential equations. The sampling process, which automatically records the values of joint angles and the corresponding external parameters of a PCU, is performed as an off-line process when an RSAR system is installed. In an on-line process, an external parameter of a PCU at a certain joint configuration, which is directly readable from motors, can be computed by evaluating the pre-built B-spline surfaces. We provide details of the proposed method and validate the model through a comparison with an analytic RSAR model with synthetic noises to simulate assembly errors.

Study on Robot Manipulator applying the Gravity Compensator (중력 보상기를 적용한 로봇 매니퓰레이터 연구)

  • Choi, Hyeung-Sik;Hur, Jae-Gwan;Seo, Hae-Yong;Hong, Sung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.267-274
    • /
    • 2010
  • In this paper, the structure of a gravity compensator was studied, and the 6-axis robot manipulator which is newly developed by applying the gravity compensator is presented to improve the torque performance of the robot joint. The kinematics analysis on the robot was presented. Also, a simulation of the performance of the joint actuator of robot adopting the gravity compensator was presented by applying various springs. According to the simulation results, it was validated that the payload effect on the robot joint actuator adopting the gravity compensator is reduced in proportion to the spring intensity of the gravity compensator.

Relationship between the Impact Peak Force and Lower Extremity Kinematics during Treadmill Running

  • Ryu, Ji-Seon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.3
    • /
    • pp.159-164
    • /
    • 2018
  • Objective: The aims of this study were to determine the impact peak force and kinematic variables in running speed and investigate the relationship between them. Method: Thirty-nine male heel strike runners ($mean\;age=21.7{\pm}1.6y$, $mean\;mass=72.5{\pm}8.7kg$, $mean\;height=176.6{\pm}6.1cm$) were recruited in this investigation. The impact peak forces during treadmill running were assessed, and the kinematic variables were computed using three-dimensional data collected using eight infrared cameras (Oqus 300, Qualisys, Sweden). One-way analysis of variance ANOVAwas used to investigate the influence of the running speed on the parameters, and Pearson's partial correlation was used to investigate the relationship between the impact peak force and kinematic variables. Results: The running speed affected the impact peak force, stride length, stride frequency, and kinematic variables during the stride phase and the foot angle at heel contact; however, it did not affect the ankle and knee joint angles in the sagittal plane at heel contact. No significant correlation was noted between the impact peak force and kinematic variables in constantrunning speed. Conclusion: Increasing ankle and knee joint angles at heel contact may not be related to the mechanism behind reducing the impact peak force during treadmill running at constant speed.

Simulation and Experimental Methods for Media Transport System: Part I, Three-Dimensional Sheet Modeling Using Relative Coordinate

  • Cho, Heui-Je;Bae, Dea-Sung;Choi, Jin-Hwan;Lee, Soon-Geul;Rhim, Sung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.305-311
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

Simulation and Experimental Methods for Three-Dimensional Sheet Media Transport System Using Relative Coordinate (상대좌표를 이용한 3차원 미디어 이송장치에 대한 실험방법과 Simulation에 대한 연구)

  • Dae, Dae-Sung;Cho, Heui-Je
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.573-576
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

  • PDF