• Title/Summary/Keyword: Joint design

Search Result 2,670, Processing Time 0.03 seconds

Three-Dimensional Modelling and Sensitivity Analysis for the Stability Assessment of Deep Underground Repository

  • Kwon, S.;Park, J.H.;Park, J.W.;Kang, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.605-618
    • /
    • 2001
  • For the mechanical stability assessment of a deep underground high-level waste repository. computer simulations using FLAC3D were carried out and important parameters including stress ratio, depth, tunnel size, joint spacing, and joint properties were chosen from sensitivity analysis. The main effect as well as the interaction effect between the important parameters could be investigated effectively using fractional factorial design . In order to analyze the stability of the disposal tunnel and deposition hole in a discontinuous rock mass, different modelings were performed under different conditions using 3DEC and the influence of joint distribution and properties, rock properties and stress ratio could be determined. From the three dimensional modelings, it was concluded that the conceptual repository design was mechanically stable even in a discontinuous rock mass.

  • PDF

Evaluation of Dynamic Behavior of Rail Joints on Personal Rapid Transit Track (소형무인경전철(PRT)궤도 레일이음매의 동적거동 분석)

  • Choi, Jung-Youl;Kim, Jun-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.89-94
    • /
    • 2016
  • The objective of this study was to estimate the dynamic behavior of a personal rapid transit(PRT) track system using a rail of rectangular tube section and a rail joint of sliding type, and to compare the results with the normal rail and rail joint of a PRT track system by performing field measurements using actual vehicles running along the service lines. The measured vertical displacement of rail and sleeper, and vertical acceleration of rail for the normal rail and rail joint section were found to be similar, and the rail joint of sliding type satisfied the design specifications of the track impact factor for a conventional railway track. The experimental results showed that the overall dynamic response of the rail joint were found to be similar to or less than that of the normal rail, therefore the rail joint of sliding type for PRT track system was sufficient to ensure a stability and safety of PRT track system.

Development of Humanoid Joint Module for Safe Human-Robot Interaction (인간과의 안전한 상호 작용을 고려한 휴머노이드 조인트 모듈 개발)

  • Oh, Yeon Taek
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.264-271
    • /
    • 2014
  • In this study, we have developed the humanoid joint modules which provide a variety of service while living with people in the future home life. The most important requirement is ensuring the safety for humans of the robot system for collaboration with people and providing physical service in dynamic changing environment. Therefore we should construct the mechanism and control system that each joint of the robot should response sensitively and rapidly to fulfill that. In this study, we have analyzed the characteristic of the joint which based on the target constituting the humanoid motion, developed the optimal actuator system which can be controlled based on each joint characteristic, and developed the control system which can control an multi-joint system at a high speed. In particular, in the design of the joint, we have defined back-drivability at the safety perspective and developed an actuator unit to maximize. Therefore we establish a foundation element technology for future commercialization of intelligent service robots.

Development of a Joint Torque Sensor Fully Integrated with an Actuator

  • Kim, Bong-Seok;Yun, Seung-Kook;Kang, Sung-Chul;Hwang, Chang-Soon;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1679-1683
    • /
    • 2005
  • This paper suggests the new type of a joint torque sensor which is attached at each joint of a manipulator for making compliance. Previous six axis force/torque sensors are high cost and installed end-effector of the manipulator. However, torque on links of previous an end-effector cannot be measured. We design a joint torque sensor that can be fully integrated with an actuator in order to measure applying torque of the manipulator. The sensor system is designed through the structural analysis. The proposed joint torque sensors are installed to the 6 DOF manipulator of a mobile robot for hazardous works and we implemented experiments of measuring applied torque to the manipulator. By the experiment, we proved that the proposed low-cost joint torque sensor gives acceptable performance when we control a manipulator.

  • PDF

Studies on Damping Ratio of Nailed Joint Connecting Wall to Floor in Light Frame House (경골목조주택의 벽체-바닥체 못결합부의 감쇠비에 관한 연구)

  • Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.65-71
    • /
    • 1996
  • In the design of wood structures, the consideration of the dynamic load effect has been increased. Generally, damping ratio is presented as the method of considering dynamic load effect. So, the relationship between joint type and damping ratio was investigated. It has been known that the joint extremely damp the dynamic load in wood structures. Static test was performed to determine the effects of nail size and friction area on joint strength and stiffness. Joint strength and stiffness were increased with nail size. However, the static properties of joint was not affected by friction area. Cyclic test was performed to determine the effects of nail size, friction area and load magnitude on damping ratio, Damping ratio was affected by all factors. Increasing the width of the bottom plate was suggested as the most adequate method to increase the damping ratio without the reduction of the static properties of the structures.

  • PDF

Strength Evaluation of Adhesive Bonded Joint for Light Weight Structure by Single-Lab Joint Test (단면 겹치기 이음 시험에 의한 경량구조물용 접착 이음강도의 평가)

  • 이강용;김준범;최홍섭;우형표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.87-93
    • /
    • 1997
  • The bonding strength evaluation of light weight materials for electrical vehicle applications has been performed through single lap joint tests in which the design parameters such as fillet, joint style, adherend, bonding overlap length,bonding thickness, and environmental condition(soaking time in $25^{\circ}C$ water) are considered. It is experimentally oberved that lap shear strength of joint increases for higher fillet height, longer overlap length, and thinner bonding layer thickness. Al-Al adherend combination shows much higher lap shear strength than AL-FRP and FRP-FRP adherend combinations. Riveting at adhesive bonded joint of AL-AL adherend combination makes lap shear strength decrease. Effect of soaking time on lap shear strength is negligible.

  • PDF

A study on the stability of Keyblock in underground excavation with consideration of joint persistence (절리 영속성을 고려한 지하굴착에서의 Keyblock 안정성 고찰)

  • 조태진;김석윤
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.351-358
    • /
    • 1998
  • A statistical method for assessing the joint persistence based on the in-situ measurement of joint trace length has been derived. This method utilizes the probability density distribution of either the joint trace length or the diameter of hypothetically circular joint diameter depending on the relative size of joint surface to that of the potential keyblock. The stability of potential keyblock with different sizes and joint persistences has been also calculated to illustrate the applicability of the developed method to the design and the safe excavation of large scale underground openings.

  • PDF

Theoretical and experimental modal responses of adhesive bonded T-joints

  • Kunche, Mani Chandra;Mishra, Pradeep K.;Nallala, Hari Babu;Hirwani, Chetan K.;Katariya, Pankaj V.;Panda, Subhransu;Panda, Subrata K.
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.361-369
    • /
    • 2019
  • The modal frequency responses of adhesive bonded T-joint structure have been analyzed numerically and verified with own experimental data. For this purpose, the damped free frequencies of the bonded joint have been computed using a three-dimensional finite element model via ANSYS parametric design language (APDL) code. The practical relevance of the joint structure analysis has been established by comparing the simulation data with the in-house experimental values. Additionally, the influences of various geometrical and material parameters on the damped free frequency responses of the joint structure have been investigated and final inferences discussed in details. It is observed that the natural frequency values increase for the higher aspect ratios of the joint structure. Also, the joint made up of Glass fiber/epoxy with quasi-isotropic fiber orientation indicates more resistance towards free vibration.

Design of Compliant Hinge Joints inspired by Ligamentous Structure (인대 구조에 기인한 유연 경첩 관절의 설계)

  • Lee, Geon;Yoon, Dukchan;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.237-244
    • /
    • 2019
  • This paper suggests novel types of joint mechanisms composed of elastic strings and rigid bodies. All of the human hinge joints have the articular capsule and a pair of collateral ligaments. These fibrous tissues make the joint compliant and stable. The proposed mechanism closely imitates the human hinge joint structure by using the concept of tensegrity. The resultant mechanism has several characteristics shown commonly from both the tensegrity structure and the human joint such as compliance, stability, lightweight, and non-contact between rigid bodies. In addition, the role and feature of the human hinge joints vary according to the origins of a pair of collateral ligaments. Likewise, the locations of two strings corresponding to a pair of collateral ligaments produce different function and motion of the proposed mechanism. It would be one of the advantages obtained from the proposed mechanism. How to make a joint mechanism with different features is also suggested in this paper.

A new design method for site-joints of the tower crane mast by non-linear FEM analysis

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.343-365
    • /
    • 2019
  • Among the themes related to earthquake countermeasures at construction sites, those for tower cranes are particularly important. An accident involving the collapse of a crane during the construction of a skyscraper has serious consequences, such as human injury or death, enormous repair costs, and significant delays in construction. One of the causes of deadly tower crane collapses is the destruction of the site joints of the tower crane mast. This paper proposes a new design method by static elastoplastic finite element analysis using a supercomputer for the design of the end plate-type tensile bolted joints, which are generally applied to the site joints of a tower crane mast. This new design method not only enables highly accurate and reliable joint design but also allows for a design that considers construction conditions, such as the introduction of a pre-tension axial force on the bolts. By applying this new design method, the earthquake resistance of tower cranes will undoubtedly be improved.