• Title/Summary/Keyword: Joint design

Search Result 2,660, Processing Time 0.041 seconds

Analysis Of the Joint Structure of the Vehicle Body by Condensed Joint Matrix Method

  • Suh, Myung-Won;Yang, Won-Ho;Jonghwan Suhr
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1639-1646
    • /
    • 2001
  • It is often necessary that the joints characteristics should be determined in the early stage of the vehicle body design. The researches on identification of joints in a vehicle body have been performed until the recent year. In this study, the joint characteristics of vehicle structure were expressed as the condensed matrix forms from the full joint stiffness matrix. The condensed joint stiffness matrix was applied to typical T-type and Edge-type joints, and the usefulness was confirmed. In addition, it was applied to the real center pillar model and the full vehicle body in order to validate the practical application.

  • PDF

Finite Elements Analysis Application to the Structural Design of the Frame Type Furniture (골조형(骨造型) 가구구조설계(家具構造設計)에의 유한요소해석 응용)

  • Chung, Woo-Yang;Eckelman, Carl A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.8-15
    • /
    • 1995
  • This analytical study was carried out to make quality and productivity up in designing the frame-type furniture with semi-rigid joint by understanding the mechanical and structural behavior of the joint and by evaluating the validity of application of the time-saving Finite Element Method to its structural analysis. Slope deflection equation for rigid joint was modified to describe the moment-rotation behavior of semi-rigid joint and the joint stiffness factor(Z) could be calculated to lessen the experimental expense. It was proved that Finite Element Analysis with imaginary elements having equivalent MOE to the semi-rigid joint could be the alternative method for the structural analysis of the frame-type furniture, comparing the internal rotation of the 2-dimensional beam-to-column model with two-pin(wooden dowel) from the finite element method with other available theoretical and experimental rotation value.

  • PDF

A Study on Design Parameters Affecting the Stiffness of Center Pillar-Roof Rail Joint (센터필러 -루프레일 결합부의 강성에 영향을 미치는 인자 연구)

  • 이상범;임홍재;이종선
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.94-99
    • /
    • 2004
  • The global stiffnesses and vibration characteristics of vehicle structures are mainly influenced by local stiffnesses of the joint structures consisted of complicated thin-walled panels. In this paper, the parametric study for the stiffnesses of the center pillar-roof rail joint of vehicle structure is performed through the linear static analysis. The analysis result shows that the reinforcement panel much affects the joint stiffness of out-plane direction (i.e., z-direction). And also, the flange radius and width of the joint structure much affect the Joint stiffness of out-plane direction. The study shows that vehicle joint stiffnesses can be effectively determined in designing vehicle structure through the parametric study.

A Study on Numerical Approximation of Joint Stiffness of Vehicle Structures (차체 구조물 결합부 강성의 근사적 수식화에 관한 연구)

  • 박정률;이상범;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.155-163
    • /
    • 2001
  • Joint stiffnesses can affect the vibrational characteristics of car body structures and, therefore, should be included in vehicle system models. In this paper, a numerical approximation of joint stiffness is presented for considering joint flexibility of thin walled beam jointed structures. Using the proposed method, it is possible to optimize joint structures considering the change of section shapes in vehicle structures. The numerical approximation of joint stiffnesses is derived using the RSM(Response Surface Method) in terms of beam section properties. The study shows that joint stiffnesses can be effectively determined in designing vehicle structure.

  • PDF

A Study for Improved Design Criteria of Composite Pile Joint Location based on Case Analysis (사례 분석을 통한 복합말뚝 이음위치의 설계 기준식 개선 연구)

  • Hwang, Uiseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.21-30
    • /
    • 2019
  • Composite pile, which is composed of the steel pipe pile in which the large horizontal force acts and the PHC pile in which the small horizontal force acts by a special connecting devices, is being commercialized as a base material for civil engineering structures. The core of such a composite pile can be said to be a design criterion for estimating the joint position and stability of the connection device between steel pipe pile and PHC pile. In Korea, there is no precise specification for the location of composite pile joints. In the LH Design Department (Korea Land & Housing Corporation, 2009), "Application of composite pile design and review of design book marking" was made with reference to Road Design Practice Volume 3 (Korea Expressway Corporation, 2001). this is used as a basis of the design of the composite pile. It can not be regarded as a section change of the composite pile, so it has a limitation in application. Therefore, In this study, we propose a design criterion for the location of the section of the composite pile (joint of steel pipe pile and PHC pile) and evaluate the stability and economical efficiency of it by using experimental method and analytical method. Analysis of composite pile design data installed in 79 domestic bridges abutment showed that the stresses, bending moments, and displacements acting on the pile body and connection of the pile were analyzed. Through the redesign process, it was confirmed that the stresses generated in the connecting device occur within the allowable stress values of the connecting device and the PHC pile. In conclusion, the design proposal of composite pile joint location through empirical case study in this study is an improved design method considering both stability and economical efficiency in designing composite pile.

Comparison of Seismic Performance of Steel Moment Frame according to Different Analytic Joint Models (국내 철골골조의 접합부모델에 따른 내진성능 비교)

  • 이준석;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.317-323
    • /
    • 2000
  • The purpose of this study is to compare the seismic resistant capacity inherent in ductile moment resisting frames using two different joint modeling. The difference between these two models is the capability for considering the panel zone deformation. For this purpose, 5 story steel moment frame is designed in compliance to the Korean seismic design provisions and the steel structure design standard. Nonlinear Static Procedure(NSP) and Nonlinear Dynamic Procedure(NDP) of this structure are carried out using two different joint models. Based on the results of NSP and NDP, the sensitivity of the response to analytical modeling is appraised. Also, it is proposed that for the highrise steel structures, the joint deformation should be accounted properly by the analytical model.

  • PDF

Optimization of Peltier Current Leads Cooled by Two-Stage Refrigerators

  • Jeong, Eun-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.94-101
    • /
    • 2006
  • A theoretical investigation to find thermodynamically optimum design conditions of conduction-cooled Peltier current leads is performed. A Peltier current lead (PCL) is composed of a thermoelectric element (TE), a metallic lead and a high temperature superconductor (HTS) lead in the order of decreasing temperature. Mathematical expressions for the minimum heat flow per unit current crossing the TE-metal interface and the minimum heat flow per unit current from the metal lead to the joint of the metal and the HTS leads are obtained. It is shown that the temperature at the TE -metal interface possesses a unique optimal value that minimizes the heat flow to the joint and that this optimal value depends on the material properties of the TE and the metallic lead but not the joint temperature nor electric current. It is also shown that there exists a unique optimal value for the joint temperature between the metal and the HTS leads that minimizes the sum of the power dissipated by ohmic heating in the current leads and the refrigerator power consumed to cool the lead, for a given length of the HTS.

Estimation of Contact Stress Distribution Factor in Bolt Joint with variable Fastening torque (체결력에 따른 볼트 결합부의 접촉응력분포계수 평가)

  • 김종규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.73-79
    • /
    • 1999
  • Most of mechanical structures are combined of substructures such as beams and/or plates. There are few systems with unibody structures but are many systems with united body structures. Generally the dynamic a nalysis of whole structures is performed under alternation load. In the structure design, the analysis of each bolted joint is more important than others for zero severity. This paper presents the analysis method of contact stress distribution factor in the bolted joint with variable fastening torque on joints in the structure. At first, a static vibration test was performed to find out a nominal stress of bolt jointed plates from the relationship between natural frequency and nominal stress. Then a contact stress was computed at contact point between bolt and plate in the structure. It is believed that the proposed method has promisiong implications for safer design with index of contact stress distribution factor and has merits for cost-down and saving time at the beginning of vehicle development.

  • PDF

Development of Anthropomorphic Robotic Joint (인간형 로봇관절의 개발)

  • Ryu, Seong-Mu;Baek, Sang-Hun;Choe, Hyeok-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.89-97
    • /
    • 2001
  • In this paper, we present a new two-dof anthropomorphic joint mechanism that enables to mimic the humanlike motion. The proposed mechanism, called Double Active Universal Joint(DAUJ), generates a two-dof swivel motion without rolling by the coupled motion of two independent motor. In addition, we perform basic experiments to confirm the effectiveness of the proposed mechanism and the results are reported.

Modeling and Vibration Analysis of Vehicle Structures Using Equivalent Beam Stiffness for Joints (결합부 등가빔을 이용한 저진동 차체의 모델링 및 해석기법)

  • 임홍재;김윤영;이상범;송명의
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.537-542
    • /
    • 1995
  • In this paper the method of modeling and optimization for the joint of the vehicle structure is proposed. First it is described that the method of substituting equivalent beam elements to spring elements for the joint. The stiffnesses of the spring elementsare calculated using the section properties of equivalent beam elements. To get required dynamic characteristics section properties of equivalent beam element are set to design variables and optimized. The study shows that joint stiffnesses can be effectively determined in designing vehicle structure.

  • PDF