• 제목/요약/키워드: Joint contact force

검색결과 131건 처리시간 0.026초

Statistical Parametric Mapping을 이용한 시상면에서의 양발 착지와 외발 착지의 전략 차이 (Analysis of the Differences of the Shock Attenuation Strategy between Double-leg and Single-leg Landing on Sagittal Plane using Statistical Parametric Mapping)

  • Ha, Sunghe;Park, Sang-Kyoon;Lee, Sae Yong
    • 한국운동역학회지
    • /
    • 제29권4호
    • /
    • pp.255-261
    • /
    • 2019
  • Objective: The purpose of this study was to investigate differences of shock attenuation strategies between double-leg and single-leg landing on sagittal plane using statistical parametric mapping. Method: Nine healthy female professional soccer players (age: 24.0±2.5 yrs, height: 164.9±3.3 cm, weight: 55.7±6.6 kg, career: 11.2±1.4 yrs) were participated in this study. The subjects performed 10 times of double-leg and single-leg landing from the box of 30 cm height onto force plates respectively. The ground reaction force, angle, moment, angular velocity, and power of the ankle, knee, and hip joint on sagittal plane was calculated from initial contact to maximum knee flexion during landing phase. Statistical parametric mapping was used to compare the biomechanical variables of double-leg and single-leg landing of the dominant leg throughout the landing phase. Each mean difference of variables was analyzed using a paired t-test and alpha level was set to 0.05. Results: For the biomechanical variables, significantly increased vertical ground reaction force, plantarflexion moment of the ankle joint, negative ankle joint power and extension moment of the hip joint were found in single-leg landing compared to double-leg landing (p<.05). In addition, the flexion angle and angular velocity of the knee and hip joint in double-leg landing were observed significantly greater than single-leg landing, respectively (p<.05). Conclusion: These findings suggested that negative joint power and plantarflexion moment of the ankle joint can contribute to shock absorption during single-leg landing and may be the factors for preventing the musculoskeletal injuries of the lower extremity by an external force.

여자유도 액츄에이터를 이용한 능동RCC 장치의 개발 (Development of Adaptive RCC Mechanism Using Double-Actuator Units)

  • 임혁진;김병상;강병덕;송재복;박신석
    • 로봇학회논문지
    • /
    • 제2권2호
    • /
    • pp.168-177
    • /
    • 2007
  • In a number of fields, robots are being used for two purposes: efficiency and safety. Most robots, however, have single-actuator mechanism for each joint, where the tasks are performed with high stiffness. High stiffness causes undesired problems to the environment and robots. This study proposes redundant actuator mechanism as an alternative idea to cope with these problems. In this paper, Double-Actuator Unit (DAU) is implemented at each joint for applications of multi-link manipulators. The DAU is composed of two motors: the positioning actuator and the stiffness modulator, which enables independent control of positioning and compliance. A three-link manipulator with DAUs enables adaptive control of RCC. By modulating the joint stiffness of the manipulator and controlling the position of RCC, we can significantly reduce contact force during assembly tasks and surgical procedures.

  • PDF

고관절 구동 방식을 갖는 바퀴-다리형 로봇과 지면 간 접촉점에서의 마찰계수 추정 (Estimation of the Frictional Coefficient of Contact Point between the Terrain and the Wheel-Legged Robot with Hip Joint Actuation)

  • 신동환;안진웅;문전일
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.284-291
    • /
    • 2011
  • This paper presents the estimation of the frictional coefficient of the wheel-legged robot with hip joint actuation producing maximum tractive force. Slip behavior for wheel-legged robot is analytically explored and physically understood by identification of the non-slip condition and derivation of the torque limits satisfying it. Utilizing results of the analysis of slip behavior, the frictional coefficients of the wheel-legged robot during stance phase are numerically estimated and finally this paper suggests the pseudo-algorithm which can not only estimate the frictional coefficients of the wheel-legged robot, but also produce the candidate of the touch down angle for the next stance.

원형강관 플랜지 이음에 관한 실험적 연구 (Experimental Study on Circular Flange Joints in Tubular Structures)

  • 신창훈;한덕전
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.119-127
    • /
    • 2002
  • 본 연구의 목적은 강관구조물에서 고력볼트로 인장접합되는 플랜지 이음의 거동을 연구하는데 목적이 있다. 9개의 플랜지 이음 실험체의 실험을 수행하였으며, 실험시 고력볼트의 변형율과 이음부의 변형율 그리고 변위를 측정하였다. 고력볼트의 변형율, 플랜지 사이에서 발생하는 지레반력 그리고 강관과 플랜지 판의 응력분포를 연구하였다. 원형강관 플랜지 이음 설계에 사용되는 기준식을 비교 분석하였다.

위치/힘 제어가 가능한 유성기어 기반의 더블 액츄에이터 유닛 (Double Actuator Unit based on the Planetary Gear Train Capable of Position/Force Control)

  • 김병상;박정준;송재복;김홍석
    • 로봇학회논문지
    • /
    • 제1권1호
    • /
    • pp.81-88
    • /
    • 2006
  • Control of a robot manipulator in contact with the environment is usually conducted by the direct feedback control using a force-torque sensor or the indirect impedance control. In these methods, however, the control algorithms become complicated and the performance of position and force control cannot be improved because of the mechanical properties of the passive components. To cope with such problems, redundant actuation has been used to enhance the performance of position control and force control. In this research, a Double Actuator Unit (DAU) is proposed, with which the force control algorithm can be simplified and can make the robot ensure the safety during the external collision. The DAU is composed of two actuators; one controls the position and the other modulates the joint stiffness. Using this unit, it is possible to independently control the position and stiffness. The DAU based on the planetary gears is investigated in this paper. Performance using the DAU is also verified by various experiments. It is shown that the manipulator using this mechanism provides better safety during the impact with the environment by reducing the joint stiffness appropriately on detecting the collision of a manipulator.

  • PDF

Simulator를 이용한 인공무릎관절 접촉면의 압력분포 및 운동성 분석 (Analysis of the Contact Pressure Distribution and Kinetics of Knee Implant Using the Simulator)

  • 이문규;김종민;김동민;최귀원
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권4호
    • /
    • pp.363-367
    • /
    • 2003
  • 인공무릎관절의 수명에 직접적인 영향을 주는 인자는 접촉면에 대한 접촉면적과 압력분포이다 따라서. 이에 대한 실험적인 평가가 필요하였고 knee simulator 혹은 K-scan sensor를 포함한 시스템과 같은 많은 연구가 진행되어 왔다. 그러나 지금까지 보행주기에 따른 연속적인 인공관절 운동에 대한 접촉면의 압력분포를 실시간으로 분석한 연구는 미흡하다 따라서 본 연구의 목적은 보행주기를 모사하는 simulator와 I-scan을 이용하여 연속적인 동작에 따른 접촉면의 압력분포를 분석함에 있다. 본 연구의 목적을 이루기 위해서 생체내 인공관절 환경을 정확히 표현할 수 있는 knee simulator를 제작하였다. 네 방향의 자유도를 갖고 있는 본 simulator는 soft tissue의 기능을 포함하고 있고 PC Program을 통하여 압축하중과 femoral component의 굴곡각을 조절할 수 있다. 본 시스템의 I-scan sensor는 보행주기에 따른 압력분포를 분석할 수 있다. 보행주기에 대한 압력분포는 압축하중곡선에 따라 주요하게 변화함을 알 수 있고 운동성에 영향을 쿠는 압력중심의 위치도 변한다는 것을 알 수 있다. 따라서 본 연구에서 제작한 knee simulator는 보행주기 같은 특정의 운동정보를 이용하여 접촉면의 압력분포 및 운동성 같은 기계적 성능을 평가할 수 있고 형상 설계를 위한 기초 자료를 제공할 수 있다.

복합재 압력탱크의 스커트 조인트 설계를 위한 인자 연구 (The Effects of Various Geometric Parameters on the Skirt Joint Design of Composite Pressure Tanks)

  • 김철웅;홍창선;김천곤;박재성
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.13-16
    • /
    • 2002
  • In this research, the design methods of the rocket joint parts were suggested. In the first section, nonlinear finite element analyses for joint parts of a composite pressure tank were performed. In the analyses, the detailed finite element modeling was performed and complex boundary conditions(contact problem, clamping force) were considered. Secondly, several guidelines for the design of joint parts were suggested. The parametric study for geometric design variables was peformed. Finally, the parametric study result was categorized for the multi-Joint part design of the axi-symmetric composite structure.

  • PDF

순응성 발목 관절을 갖는 두발 로보트의 보행 (Walking of a biped robot with compliant ankle joints)

  • 이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1157-1160
    • /
    • 1996
  • Control of a biped robot which has compliant ankle joints is dealt in this paper. Simulated version of a human ankle joint is built using springs and mechanical constraints, which gives a flexibility of joint and compliance against the touching ground. The biped robot with compliant ankle joints proposed here gives a good contact between its sole and the ground and makes foot landing soft. As a result, installing force sensors for measuring the center of gravity of the biped becomes easier. A motor to drive an ankle joint is not needed which makes legs light. However, the control problem becomes more difficult because the torque of the ankle joint to put the biped in a desired walking gait cannot be provided from the compliant ankle joint. To solve this problem, we proposed a dynamic gait modification method by adjusting the position of a hip joint. Simulation results for the mathematical model of the SD-2 biped in the Ohio State University are given to show the validity of the proposed controller.

  • PDF

Relationship between Leg Stiffness and Kinematic Variables According to the Load while Running

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • 한국운동역학회지
    • /
    • 제27권2호
    • /
    • pp.109-116
    • /
    • 2017
  • Objective: This study aimed to investigate the relationship between leg stiffness and kinematic variables according to load while running. Method: Participants included eight healthy men (mean age, $22.75{\pm}1.16years$; mean height: $1.73{\pm}0.01m$; mean body weight, $71.37{\pm}5.50kg$) who ran with no load or a backpack loaded with 14.08% or 28.17% of their body weight. The analyzed variables included leg stiffness, ground contact time, center of gravity (COG) displacement and Y-axis velocity, lower-extremity joint angle (hip, knee, ankle), peak vertical force (PVF), and change in stance phase leg length. Results: Dimensionless leg stiffness increased significantly with increasing load during running, which was the result of increased PVF and contact time due to decreased leg lengths and COG displacement and velocity. Leg length and leg stiffness showed a negative correlation (r = -.902, $R^2=0.814$). COG velocity showed a similar correlation with COG displacement (r = .408, $R^2=.166$) and contact time (r = -.455, $R^2=.207$). Conclusion: Dimensionless leg stiffness increased during running with a load. In this investigation, leg stiffness due to load increased was most closely related to the PVF, knee joint angle, and change in stance phase leg length. However, leg stiffness was unaffected by change in contact time, COG velocity, and COG displacement.

교합안정장치 치료가 교합접촉상태에 끼치는 효과 (Effects of Centric Relation Splint Therapy on the Occlusal Contact State in Craniomandibular Disorders)

  • Whan-Cheol Kim;Kyung-Soo Han;Seok-Man Kang
    • Journal of Oral Medicine and Pain
    • /
    • 제18권2호
    • /
    • pp.71-79
    • /
    • 1993
  • Many types of occlusal splints are used for treatment of craniomandibular disorders. Most widely used splint among them is flat-type centric relation splint. Insertion of splint into the mouth may cause increasing of vertical dimension, masticatory muscle realignment and rearrangement of maxillo-mandibular relationship, so as a result of splint treatment, occlusal relation may vary whether you like it or not. From this point of view, occlusal state of patient shold be frequently monitored to prevent undesired or harmful effect during occlusal splint therapy. The purpose of this study was to investigate the effect of occlusal splint, especially centric relation splint, on the occlusal contact state after 3 months treatment. 32 patients with craniomandibular disorders who had unilateral symptoms participated in this study. To observe and record occlusal contact state, the author used T-Scan system (Tekscan Co. U.S.A.) at both pretreatment and posttreatment. The recorded date were analyzed with regard to contact number, contact force and contact time, change of anterior tooth contact and coincidence of first contact point with affected side were observed, too. Aan last, the subjects were divided into 2 groups and compared, according to average value of VAS index, with respect to joint pain, sound and limitation of movement, respectively. The collected date were statistically processed with SPSS and the result as follows : 1. Total occlusal contact number and force were not changed by occlusal splint therapy but total occlusal contact time decreased slightly. 2. There was a tendency of increasing number of subjects with anterior tooth contact after treatment and change of first contact point side were observed in as many as 40.6% of subjects. 3. There were no difference between higher and lower group of VAS index, and between pretreatment and posttreatment in each group, either.

  • PDF