• Title/Summary/Keyword: Joint configuration

Search Result 245, Processing Time 0.022 seconds

Numerical investigation of glass windows under near-field blast

  • Chiara Bedon;Damijan Markovic;Vasilis Karlos;Martin Larcher
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.167-181
    • /
    • 2023
  • The determination of the blast protection level and the corresponding minimum load-bearing capacity for a laminated glass (LG) window is of crucial importance for safety and security design purposes. In this paper, the focus is given to the window response under near-field blast loading, i.e., where relatively small explosives would be activated close to the target, representative of attack scenarios using small commercial drones. In general, the assessment of the load-bearing capacity of a window is based on complex and expensive experiments, which can be conducted for a small number of configurations. On the other hand, nowadays, validated numerical simulations tools based on the Finite Element Method (FEM) are available to partially substitute the physical tests for the assessment of the performance of various LG systems, especially for the far-field blast loading. However, very little literature is available on the LG window performance under near-field blast loads, which differs from far-field situations in two points: i) the duration of the load is very short, since the blast wavelength tends to increase with the distance and ii) the load distribution is not uniform over the window surface, as opposed to the almost plane wave configuration for far-field configurations. Therefore, the current study focuses on the performance assessment and structural behaviour of LG windows under near-field blasts. Typical behavioural trends are investigated, by taking into account possible relevant damage mechanisms in the LG window components, while size effects for target LG windows are also addressed under a multitude of blast loading configurations.

PREDICTION OF RESIDUAL STRESS PROFILE IN SINGLE-SIDED BUTT WELD USING COMPLIANCE METHOD

  • Kim, Yooil;Jeon, Yu-Chul;Kang, Joong-Kyoo;Han, Yong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.156-161
    • /
    • 2002
  • It depends on the joint configuration, dimensions and constraints on the joint whether the residual stress at the root of single-sided butt weld is tensile or not. Therefore, recommendation is generally made that high R ratio should be used in the fatigue test of this type of joint in order to prevent excessively long life caused by compressive residual stress. in this research, the residual stress profile in butt weld joint was obtained through compliance method, using successive extension of a slot and measurement of the variation of strain during the slot extension. The residual stress profile was firstly assumed to be the linear summation of Legendre polynomials up to 9th order excluding 0th and 1st order. Strain variation on the surface was measured while the slot was being extended by cutting to find out the 8 unknown coefficients of each polynomial tenn. The cut was made by the electric discharge machine. It was concluded that the residual stress near the surface stayed positive, however, it turned into the negative value as soon as it passed through 2 or 3 mm depth. Several fatigue tests were also carried out under zero stress ratio. Test results showed that fatigue life coincides well with the design cuive of butt joint in British Standards, which supports that it is tensile residual stress that exists near the weld root.

  • PDF

Fabrication of Superconducting Joints between 61 Filaments of BSCCO 2223 Tapes (61심 BSCCO 2223 고온초전도 선재의 접합부 제조)

  • 김철진;박성창;유재무
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.137-144
    • /
    • 1998
  • High-temperature superconducting joints between 61 filaments of Bi-2223 tapes were fabricated by chem-ical corrosion and repeated thermomechanical process. The silver sheath of the superconducting tape was chemically removed using chemical etchant(NH4OH:H2O2=1:1) from one side of each tape without altering the form of lap joint. The joined region was formed by uniaxial pressing and a series of thermomechanical process and then subjected to properties measurement and microstructural analysis. The critical current(Ic) variation and I-V characteristics along the joint were mesured with several configuration of proble points. Ic value of the transition region of the joint inthe multifilament tape which limit the total current carring capacity of the superconducting tape was higher than that of monofilament tape. But the transition ex-ponent n-value of the multi-filament tape was lower than that of monofilament wire due to the interaction of the individual superconducting core of the multi-filament. The critical current through the joint area was improved by respeated press and reaction annealing treatment.

  • PDF

Ultimate Strength of branch-rotated T-joints in Cold-formed Square Hollow Sections - Chord flange failure mode - (지관이 회전된 냉간성형 각형강관 T형 접합부의 최대내력(I) - 주관 플랜지 파괴모드 -)

  • Bae, Kyu Woong;Park, Keum Sung;Kang, Chang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.657-664
    • /
    • 2002
  • This paper described the ultimate strength and deformation limit of the new uniplanar T-joints in cold-formed square hollow sections. In the configuration of the new T-joint, only a branch member is orientated to a chord member at 45 degrees in the plane of the truss. This study focused on the branch-rotated T-joints that were governed by chord flange failure in previous studies. Test results of the T-joint in cold-formed square hollow sections revealed a deformation limit of 3%B for $16.7{\leq}2{\gamma}(=B/T){\leq}33.3$ and $0.27{\leq}{\beta}(=b1/B){\leq}0.6$. The existing strength formulae for traditional T-joint were determined and a new yield-line model for the branch-rotated T-joint proposed. Finally, the strength formula on the yield-line analysis was compared with test results and the application range of the proposed formula recommended.

Fingernail Configuration

  • Jung, Jin Woo;Kim, Kwang Seog;Shin, Jun Ho;Kwon, Yu Jin;Hwang, Jae Ha;Lee, Sam Yong
    • Archives of Plastic Surgery
    • /
    • v.42 no.6
    • /
    • pp.753-760
    • /
    • 2015
  • Background A number of conditions can alter a person's fingernail configuration. The ratio between fingernail width and length (W/L) is an important aesthetic criterion, and some underlying diseases can alter the size of the fingernail. Fingernail curvature can be altered by systemic disorders or disorders of the fingernail itself. Although the shape and curvature of the fingernail can provide diagnostic clues for various diseases, few studies have precisely characterized normal fingernail configuration. Methods We measured the W/L ratio of the fingernail, transverse fingernail curvature, hand length, hand breadth, and distal interphalangeal joint width in 300 volunteers with healthy fingernails. We also investigated whether age, sex, height, and handedness influenced the fingernail W/L ratio and transverse fingernail curvature. Results In women, fingernail W/L ratios were similar across all five fingers, and were lower than those in men. The highest value of transverse fingernail curvature was found in the thumb, followed by the index, middle, ring, and little fingers. Handedness and aging influenced transverse fingernail curvature, but not the fingernail W/L ratio. Fingernails were flatter on the dominant hand than on the non-dominant hand. The radius of transverse fingernail curvature increased with age, indicating that fingernails tended to flatten with age. Conclusions Our quantitative data on fingernail configuration can be used as a reference range for diagnosing various diseases and deformities of the fingernail, and for performing reconstructive or aesthetic fingernail surgery.

Dynamic Modeling of Scissors Structure and Stiffness Analysis Based on Deployed Configuration (전개형 시저스 구조물의 동역학적 모델링 및 전개 완료 형상에 따른 강성 분석)

  • Kim, Tae-Hyun;Suh, Jong-Eun;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.405-413
    • /
    • 2019
  • Deployable structures are widely used for space mission because of their advantages in storage and transportation coming from its transformability of configuration. The space structures should be designed with high stiffness to withstand the various types of disturbance that they encounter during operation. Especially for the deployable structures, the internal forces loaded on the component or the stiffness at its deployed configuration should be analyzed since they usually consist of the thin and light structures. In this paper, a dynamic model of the scissors structure is established and its deployment behavior is analyzed, especially focusing on the deployment speed and the internal force on each joint. In addition, modal analysis is carried out for the 1-stage and 2-stage scissors structures in order to analyze the stiffness of the scissors structure based on its deployed configuration. The fundamental mode shapes and natural frequencies are analyzed and discussed.

Seismic-resistant slim-floor beam-to-column joints: experimental and numerical investigations

  • Don, Rafaela;Ciutina, Adrian;Vulcu, Cristian;Stratan, Aurel
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.307-321
    • /
    • 2020
  • The slim-floor solution provides an efficient alternative to the classic slab-over-beam configuration due to architectural and structural benefits. Two deficiencies can be identified in the current state-of-art: (i) the technique is limited to nonseismic applications and (ii) the lack of information on moment-resisting slim-floor beam-to-column joints. In the seismic design of framed structures, continuous beam-to-column joints are required for plastic hinges to form at the ends of the beams. The present paper proposes a slim-floor technical solution capable of expanding the current application of slim-floor joints to seismic-resistant composite construction. The proposed solution relies on a moment-resisting connection with a thick end-plate and large-diameter bolts, which are used to fulfill the required strength and stiffness characteristics of continuous connections, while maintaining a reduced height of the configuration. Considering the proposed novel solution and the variety of parameters that could affect the behavior of the joint, experimental and numerical validations are compulsory. Consequently, the current paper presents the experimental and numerical investigation of two slim-floor beam-to-column joint assemblies. The results are discussed in terms of moment-rotation curves, available rotational capacity and failure modes. The study focuses on developing reliable slim-floor beam joints that are applicable to steel building frame structures located in seismic regions.

Structural performance of timber frame joints - Full scale tests and numerical validation

  • Aejaz, S.A.;Dar, A.R.;Bhat, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.457-470
    • /
    • 2020
  • The force resisting ability of a connection has direct implications on the overall response of a timber framed structure to various actions, thereby governing the integrity and safety of such constructions. The behavior of timber framed structures has been studied by many researchers by testing full-scale-connections in timber frames so as to establish consistent design provisions on the same. However, much emphasis in this approach has been unidirectional, that has focused on a particular connection configuration, with no research output stressing on the refinement of the existing connection details in order to optimize their performance. In this regard, addition of adhesive to dowelled timber connections is an economically effective technique that has a potential to improve their performance. Therefore, a comparative study to evaluate the performance of various full-scale timber frame Nailed connections (Bridled Tenon, Cross Halved, Dovetail Halved and Mortise Tenon) supplemented by adhesive with respect to Nailed-Only counterparts under tensile loading has been investigated in this paper. The load-deformation values measured have been used to calculate stiffness, load capacity and ductility in both the connection forms (with and without adhesion) which in turn have been compared to other configurations along with the observed failure modes. The observed load capacity of the tested models has also been compared to the design strengths predicted by National Design Specifications (NDS-2018) for timber construction. Additionally, the experimental behavior was validated by developing non-linear finite element models in ABAQUS. All the results showed incorporation of adhesive to be an efficient and an economical technique in significantly enhancing the performance of various timber nailed connections under tensile action. Thus, this research is novel in a sense that it not only explores the tensile behavior of different nailed joint configurations common in timber construction but also stresses on improvising the same in a logical manner hence making it distinctive in its approach.

Evaluation on Cyclic Flexural Behavior of HSRC (Hybrid H-steel-reinforced Concrete) Beams Connected with Steel Columns (강재 기둥과 하이브리드 강재 보-RC 보 접합부의 반복 휨 거동 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.291-298
    • /
    • 2017
  • The objective of the present study is to evaluate the cyclic flexural behavior of a hybrid H-steel-reinforced concrete (HSRC) beam at the connection with a H-steel column. The test parameter investigated was the configuration of dowel bars at the joint region of the HSRC beam. The HSRC beam was designed to have plastic hinge at the end of the H-steel beam rather than the RC beam section near the joint. All specimens showed a considerable ductile behavior without a sudden drop of th applied load, resulting in the displacement ductility ratio exceeding 4.6, although an unexpected premature welding failure occurred at the flanges of H-steel beams connecting to H-steel column. The crack propagation in the RC beam region, flexural strength, and ductility of HSRC beam system were insignificantly affected by the configuration of dowel bars. The flexural strength of HSRC beam system governed by the yielding of H-steel beam could be conservatively evaluated from the assumption of a perfect plasticity state along the section.

Mechanical and interfacial characterization of laser welded Co-Cr alloy with different joint configurations

  • Kokolis, John;Chakmakchi, Makdad;Theocharopoulos, Antonios;Prombonas, Anthony;Zinelis, Spiros
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • PURPOSE. The mechanical and interfacial characterization of laser welded Co-Cr alloy with two different joint designs. MATERIALS AND METHODS. Dumbbell cast specimens (n=30) were divided into 3 groups (R, I, K, n=10). Group R consisted of intact specimens, group I of specimens sectioned with a straight cut, and group K of specimens with a $45^{\circ}$ bevel made at the one welding edge. The microstructure and the elemental distributions of alloy and welding regions were examined by an SEM/EDX analysis and then specimens were loaded in tension up to fracture. The tensile strength (TS) and elongation (${\varepsilon}$) were determined and statistically compared among groups employing 1-way ANOVA, SNK multiple comparison test (${\alpha}$=.05) and Weibull analysis where Weibull modulus m and characteristic strength ${\sigma}_0$ were identified. Fractured surfaces were imaged by a SEM. RESULTS. SEM/EDX analysis showed that cast alloy consists of two phases with differences in mean atomic number contrast, while no mean atomic number was identified for welded regions. EDX analysis revealed an increased Cr and Mo content at the alloy-joint interface. All mechanical properties of group I (TS, ${\varepsilon}$, m and ${\sigma}_0$) were found inferior to R while group K showed intermediated values without significant differences to R and I, apart from elongation with group R. The fractured surfaces of all groups showed extensive dendritic pattern although with a finer structure in the case of welded groups. CONCLUSION. The K shape joint configuration should be preferred over the I, as it demonstrates improved mechanical strength and survival probability.