• 제목/요약/키워드: Joint analysis

검색결과 5,235건 처리시간 0.029초

육면형 병렬기구에서의 조인트 오차의 영향 (Effect of Joint Errors in a Cubic Parallel Device)

  • 임승룡;최우천;송재복;홍대희
    • 한국정밀공학회지
    • /
    • 제18권6호
    • /
    • pp.87-92
    • /
    • 2001
  • An error analysis is very important for a precision machine to estimate its performances. This study proposes a new parallel device, cubic parallel manipulator. Errors of the proposed cubic parallel manipulator include upper and down universal joint errors, due to the directional changes in the forces in the links, and actuation errors. An error analysis is presented based on an error model formed through the relation between the universal joint errors of the cubic parallel manipulator and the end effector accuracy. The analysis shows that the method can be used in predicting the accuracy of other cubic parallel devices.

  • PDF

관절의 수동탄성특성을 이용한 족부의 생체역학적 해석 (Biomechanical Analysis of the Human Foot by Using Passive Elastic Characteristics of Joints)

  • 김시열;최현기
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.197-204
    • /
    • 2004
  • In this study we presented kinematic and kinetic data of foot joints using approximated equations and partial plantar pressure during gait. The maximum angular displacements of each tarsometatarsal joint were found to range from 4$^{\circ}$to 7$^{\circ}$ and the maximum moments were from 200Nㆍcm to 1500Nㆍcm. It was relatively wide distribution. Foot kinematic data calculated from the approximated equations, which were represented by the correlation between moment and angular displacement, and the data from motion analysis were similar. We found that the movements of foot joint were mainly decided by the passive characteristics of the joint when ground reaction force acts. The method of kinematic and kinetic analysis using approximated equations which is presented in this study is considered useful to describe the movements of foot joints in gait simulations.

보행시 전신 주요 관절의 카오스 지수 분석 (Chaos Analysis of Major Joint Motions for Young Males During Walking)

  • 박정홍;손권;서국웅;박영훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.792-795
    • /
    • 2007
  • To quantify irregular body motions the time series analysis was applied to the gait study. The motions obtained from gait experiment are complex to exhibit nonlinear behaviors. The purpose of this study is to measure quantitatively the characteristics of the major six joints of the body during walking. The gait experiments were carried out for eighteen young males walking on a motor driven treadmill. Joint motions were captured using eight video cameras, and then three dimensional kinematics of the neck and the upper and lower extremities were computed by KWON 3D motion analysis software. The largest Lyapunov exponent was calculated from the time series to quantify stabilities of each joint. The results provides a data set of nonlinear dynamic characteristics for six joints engaged in normal walking.

  • PDF

이종접합재 접합계면의 응력해석 (Stress Analysis of Brazed Interface in Dissimilar Materials by BEM)

  • 오환섭;김시현;김성재;양인수
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.171-176
    • /
    • 2003
  • In this study, stress analysis using Boundary Element Method (BEM) was carried to investigate stress distribution in the brazing joint between a Hardmetal and a HSS. The two models were proposed to analyze the stress singularity in the interfaces of the brazing joint. The material type, thickness of the filler metal and the length of the vertical brazing adhesive are considered in the BEM analysis. As results, the peak point of the stress is founded to be in the lower interface of the brazed joint. It should be noted that the maximum stress of the peak point is being affected by the thickness and length of the brazing joint.

대표 스크류를 이용한 평면형 및 험로 주행 로봇의 모빌리티 분석 (Mobility Analysis of Planar Mobile Robots and The Rough-Terrain Mobile Robot via The Representative Screw)

  • 김희국;이승은;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제8권10호
    • /
    • pp.881-889
    • /
    • 2002
  • Mobility analysis for various mobile mechanisms including mechanisms with lack of geometric generality is performed. Joint screws are employed to find the sire of feasible joint motion space or each of independent loops of mobile mechanisms. Particularly, the concept of "representative screws" is introduced to represent the feasible motion spaces for subsets of joints belonging to either a loop or a sub-system consisting of several closed loops. Firstly. simplified joint model for each of low different typical wheels popularly employed in mobile robots is described. Then. mobility analysis fir various types of planar mobile robots and the Mars Rover mobile robot for navigation on the rocky road on Mars arc performed. It is confirmed that the obtained results in this study coincide with the previous ones which were obtained by suing imaginary Joints approach(1)pproach(1)

차량용 볼조인트의 최악 조건을 고려한 강건 설계 (Robust Design of an Automobile Ball Joint Considering the Worst-Case Analysis)

  • 신봉수;김성욱;김종규;이권희
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.102-111
    • /
    • 2017
  • An automobile ball joint is the element for connecting the control arm and the knuckle arm, allowing rotational motion. The ball joint consists of the stud, plug, socket, and seat. These components are assembled through the caulking process that consists of plugging and spinning. In the existing research, the pull-out strength and gap stiffness were calculated, but we did not consider the uncertainties due to the numerical analysis and production. In this study, the uncertainties of material property and tolerance are considered to predict the distributions of pull-out strength and gap stiffness. Also, pull-out strength and gap stiffness are predicted as the a distribution rather than one deterministic value. Furthermore, a robust design applying the Taguchi method is suggested.

접착영역모델을 이용한 클린칭 접합부의 해석 모델 설계 및 적용 (Analysis and Application of Mechanical Clinched Joint Using Cohesive Zone Model)

  • 황빛나;이찬주;이선봉;김병민
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.217-223
    • /
    • 2010
  • The objective of this study is to propose the FE model for mechanical clinched joint using cohesive zone model to analyze its failure behavior under impact loading. Cohesive zone model (CZM) is two-parameter failure criteria approach, which could describe the failure behavior of joint using critical stress and fracture toughness. In this study, the relationship between failure behavior of mechanical clinched joint and fracture parameters is investigated by FE analysis with CZM. Using this relationship, the critical stress and fracture toughness for tensile and shear mode are determined by H-type tensile test and lap shear test, which were made of 5052 aluminum alloy. The fracture parameters were applied to the tophat impact test to evaluate the crashworthiness. Compared penetration depth and energy absorption at the point where 50% of total displacement in result of FE analysis and experiment test for impact test, those has shown similar crashworthiness.

Bolted joints for single-layer structures: numerical analysis of the bending behaviour

  • Lopez-Arancibia, A.;Altuna-Zugasti, A.M.;Aldasoro, H. Aizpurua;Pradera-Mallabiabarrena, A.
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.355-367
    • /
    • 2015
  • This paper deals with a new designed joint system for single-layer spatial structures. As the stability of these structures is greatly influenced by the joint behaviour, the aim of this paper is the characterization of the joint response in bending through Finite Element Method (FEM) analysis using ABAQUS. The behaviour of the joints studied here was influenced by many geometrical factors, such as bolts and plate sizes, distance between bolts and end-plate thickness. The study comprised five models of joints with different values of those parameters. The numerical results were compared to the results of previous experimental tests and the agreement was good enough. The differences between the numerical and experimental initial stiffness are attributed to the simplifications introduced when modelling the bolt threads as well as the presence of residual stresses in the test specimens.

Non-destructive Leakage Location Analysis Method in Substrate Behavior Response Testing of Waterproofing Membrane Systems using Thermal Emission Camera

  • 오규환;강파;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.47-48
    • /
    • 2017
  • The substrate behavior response testing outlined in KS F 2622 evaluates the leakage cause of waterproofing membrane systems when subjected to the concrete joint load behaviors by removing the waterproofing layer after testing, relying mostly on visual observation and subjective analysis. A non-destructive leakage cause and failure type analysis method is proposed currently in this study by the means of detecting leakage paths using thermal emission imaging systems. Test specimens are placed in varying temperature conditions after the concrete joint movement testing and are scanned using the thermal emission camera to determine the location and dimension of the adhesion failure/leakage path beneath the waterproofing membranes.

  • PDF

시추공벽 영상을 이용한 암반내 절리구조 해석 (Interpretation of fracture network in Rock mass using borehole wall image)

  • 김재동;김종훈
    • 터널과지하공간
    • /
    • 제8권4호
    • /
    • pp.342-350
    • /
    • 1998
  • 시추공 텔레뷰어에 의해 획득된 시추공벽 영상을 이용하여 암반내 절리 구조 특성을 해석하고자 하였다. 절리구조의 특성으로서 발달된 절리군의 방향성 및 거칠기의 산정은 영상분석을 통한 절리궤적의 추적에 의하였으며, 산정된 절리군의 JRC 값과 추정된 역학적 상수들로부터 Barton-Bandis 모델에 의해 절리강성을 추정하고 자료들을 종합하여 암반 수치해석 모델링용 절리구조도를 작성하였다. 시추공벽 절리궤적의 추적 효율성을 높이기 위하여 영상 분석기에 내장된 함수를 이용한 최적의 매크로 프로그램과 걸칠기 산정 프로그램, 절리구조도 작성용 프로그램을 완성하였다.

  • PDF