• Title/Summary/Keyword: Joint Stiffness

Search Result 821, Processing Time 0.028 seconds

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

FE Model Improvement Using Experimental Data Under the Criterion of Eigen-Property Error Minimization (고유치 오차 최소화 기준에 따른 실험데이터에 의한 유한요소 모델 개선)

  • 지영춘;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.363-373
    • /
    • 1995
  • In this study, a FE model tuning method using experimental modal data was suggested after examining all the published conventional methods. The idea of this method is introducing scale factors to maintain both the structural connectivity and the consistency in the corrected stiffness matrix which makes it always possible to interpret the stiffness elements with the corresponding physical configuration of the targeting structure. The scale factors are determined to minimize the objective function of eigen-properties. The proposed method was tested to determine the joint stiffness of a T shaped beam. The test results were also compared with the tuned stiffness obtained from a probed commercial package (SYSTUNE) and found that this method is very accurate and compatible.

End-Shape Effect for Stress Concentration Reduction of Composite Single-Lap Bonded Joint (끝단형상에 따른 복합소재 단일겹치기 체결부의 응력집중 저감에 관한 연구)

  • Kim, Jung-Seok;Hwang, Jae-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.333-340
    • /
    • 2011
  • We evaluated the stress-reduction effect for different shapes of a composite adherend with or without a spew fillet. Six different single-lap joint specimens were modeled and assessed using nonlinear finite element analysis. Moreover, we investigated the effect of the stiffness ratio of the adherend and adhesive. The single-lap joint with normal tapering had the highest stress values, and the single-lap joint with reverse tapering and a spew fillet had the lowest stress values. The composite adherends with higher stiffness had lower stress values, and the adhesives with lower stiffness had lower stress values.

Effect of Joint Stiffness on the Rock Block Behavior in the Distinct Element Analysis (개별요소해석에서 절리강성이 블록 거동에 미치는 영향)

  • Ryu, Chang-Ha;Choi, Byung-Hee
    • Explosives and Blasting
    • /
    • v.37 no.2
    • /
    • pp.14-21
    • /
    • 2019
  • Distinct element method is a powerful numerical tool for modelling the jointed rock masses. It is also a useful tool for modelling of later stage of blasting requiring large displacement. The distinct element method utilizes a rigid block idea in which the interacting force between distinct elements is calculated from contact displacement as elements penetrate slightly. The properties of joints defined as the boundaries of distinct elements are critical parameters to determine the block behavior, and affect the deformation and failure mode. However, regardless of real joint properties, joint stiffnesses have sometimes been selected without special concern just to prevent elements from penetrating too far into each other in some quasi-static problems. Depending on whether the main interest in the analysis is the prediction of the deformation with high precision, or the prediction of the block behaviour after failure, the input data such as joint stiffness may or may not have a significant effect on the results. The purpose of this study is to provide a sound understanding of the effect of the joint stiffness on the distinct element analysis results, and to help guide the selection of input data.

Prediction Factors of Fatigue in Patients with Fibromyalgia (섬유조직염환자의 피로 예측 요인)

  • Han, Sang-Sook
    • Journal of East-West Nursing Research
    • /
    • v.11 no.1
    • /
    • pp.42-50
    • /
    • 2005
  • Purpose: The purpose this research was to provide with basic data in the control of the fatiguer found in the patients with fibromyalgia by analysing the factors that predict that. Method: At three university medical center, appointed 245 out-patients diagnosed of fibromyalgia according to the conditions by American College of Rheumatology (1990). The research instruments used in this study were graphic rating scale(Anxiety, sleep disturbance, pain, joint stiffness and depression), physical activity, the number of tender points, life satisfaction and Self-efficacy scale. In data analysis, SPSS 12.0 program was utilized and data were analyzed using descriptive statistics, Pearson's correlation coefficient and multiple regression. Result: The factors that predict the fatigue of patients with fibromyalgia were sleep disturbance, life satisfaction, pain, joint stiffness, illness duration, and anxiety which explained 50.1% of the fatigue. Conclusion: It has been confirmed that the regression equation model of this research may serve as a fatigue prediction factors in patients with fibromyalgia.

  • PDF

Dynamic experimental study on single and double beam-column joints in steel traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie;Yang, Kun;Wu, Zhanjing
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.617-628
    • /
    • 2017
  • In order to study the failure mode and seismic behavior of the interior-joint in steel traditional-style buildings, a single beam-column joint and a double beam-column joint were produced according to the relevant building criterion of ancient architectural buildings and the engineering instances, and the dynamic horizontal loading test was conducted by controlling the displacement of the column top and the peak acceleration of the actuator. The failure process of the specimens was observed, the bearing capacity, ductility, energy dissipation capacity, strength and stiffness degradation of the specimens were analyzed by the load-displacement hysteresis curve and backbone curve. The results show that the beam end plastic hinge area deformed obviously during the loading process, and tearing fracture of the base metal at top and bottom flange of beam occurred. The hysteresis curves of the specimens are both spindle-shaped and plump. The ultimate loads of the single beam-column joint and double beam-column joint are 48.65 kN and 70.60 kN respectively, and the equivalent viscous damping coefficients are more than 0.2 when destroyed, which shows the two specimens have great energy dissipation capacity. In addition, the stiffness, bearing capacity and energy dissipation capacity of the double beam-column joint are significantly better than that of the single beam-column joint. The ductility coefficients of the single beam-column joint and double beam-column joint are 1.81 and 1.92, respectively. The cracks grow fast when subjected to dynamic loading, and the strength and stiffness degradation is also degenerated quickly.

Analytical modeling of thin-walled box T-joints

  • Marur, Prabhakar R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.447-457
    • /
    • 2009
  • A general analytical method for computing the joint stiffness from the sectional properties of the members that form the joint is derived using Vlasov's thin-walled beam theory. The analytical model of box T-joint under out-of-plane loading is investigated and validated using shell finite element results and experimental data. The analytical model of the T-joint is implemented in a beam finite element model using a revolute joint element. The out-of-plane displacement computed using the beam-joint model is compared with the corresponding shell element model. The results show close correlation between the beam revolute joint model and shell element model.

Nonlinear Analysis of Large Concrete Panel Structures subjected to Cyclic Loads (반복하중을 받는 대형 콘크리트 판구조의 비선형 해석)

  • 정봉오;서수연;이원호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.113-120
    • /
    • 1994
  • Large Concrete Panel Structures behave quite differently from frame or monolithic shear wall structures because of the weakness of Joint in stiffness and strength. The joint experiences large deformation such as shear-slip in vertical and horizontal joint and rocking and crushing in horizontal joint because of localized stress concentration, but the wall panels behave elastically under cyclic loads. In order to describe the nonlinear behavior of the joint in the analysis of PC structures, different analysis technique from that of RC structures is needed. In this paper, for analysis of large concrete panel subassemblage subjected to cyclic loads, the wall panels are idealized by elastic finite elements, and the joints by nonlinear spring elements with various load-deflection relationship. The analytical results are compared with the experimental results on the strength, stiffness, energy dissipation and lateral drift, and the effectiveness of this computer analysis modelling technique is checked.

  • PDF

Development of Leg Stiffness Controllable Artificial Tendon Actuator (LeSATA®) Part I - Gait Analysis of the Metatarsophalangeal Joint Tilt Angles Soonhyuck - (하지강성 가변 인공건 액추에이터(LeSATA®)의 개발 Part I - Metatarsophalangeal Joint Tilt Angle의 보행분석 -)

  • Han, Gi-Bong;Eo, Eun-Kyung;Oh, Seung-Hyun;Lee, Soon-Hyuck;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.153-165
    • /
    • 2013
  • The established gait analysis studies have regarded leg as one single spring. If we can design a knee-ankle actuating mechanism as a primary actuator for supporting knee extension, it might be possible to revolutionary store or release elastic strain energy, which is consumed during the gait cycle, and as a result leg stiffness is expected to increase. An ankle joint actuating mechanism that stores and releases the energy in ankle joint is expected to support and solve excessive artificial leg stiffness caused by the knee actuator (primary actuator) to a reasonable extent. If unnecessary kinematic energy is released with the artificial speed reduction control designed to prevent increase in gait speed caused by increase in time passed, it naturally brings question to the effectiveness of the actuator. As opposed to the already established studies, the authors are currently developing knee-ankle two actuator system under the concept of increasing lower limb stiffness by controlling the speed of gait in relative angular velocity of the two segments. Therefore, the author is convinced that compensatory mechanism caused by knee actuating must exist only in ankle joint. Ankle joint compensatory mechanism can be solved by reverse-examining the change in metatarso-phalangeal joint (MTPJ) tilt angle (${\theta}_1=0^{\circ}$, ${\theta}_2=17^{\circ}$, ${\theta}_3=30^{\circ}$) and the effect of change in gait speed on knee activity.

Analysis of the Assist Characteristics for Torque of the Ankle Plantarflexion in Elderly Adults Wearing the Ankle-Foot Orthosis (족관절 보조기를 착용한 고령자의 족관절 족저굴곡 토크 보조특성 분석)

  • Kim, Kyung;Kang, Seung-Rok;Piao, Yong-Jun;Jeong, Gu-Young;Kwon, Tae-Kyu
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.48-54
    • /
    • 2010
  • Ankle-foot orthosis with a pneumatic rubber actuator, which is intended for the assistance and the enhancement of ankle muscular activities was developed. In this study, the effectiveness of the system was investigated during plantarflexion motion of ankle joint. To find a effectiveness of the system, the subjects performed maximal voluntary isokinetic plantarflexion contraction on a Biodex-dynamometer. Plantarfexion torque of the ankle joint is assisted by subject's soleus muscle that is generated when ankle joint do plantarflexion motion. We used the muscular stiffness signal of a soleus muscle for feedback control of ankle-foot orthosis as physiological signal. For measurement of this signal, we made the muscular stiffness force sensor. We compared a muscular stiffness force of a soleus muscle between with feedback control and without it and a maximal plantarflexion torque between not wearing a ankle-foot orthosis, without feedback control wearing it and with feedback control wearing it in each ten elderly adults. The experimental result showed that a muscular stiffness force of a soleus muscle with feedback control was reduced and plantarflexion torque of an ankle joint only wearing ankle-foot orthosis was reduced but a plantarflexion torque with feedback control was increased. The amount of a increasing with feedback control is more higher than the amount of a decreasing only wearing it. Therefore, we confirmed the effectiveness of the developed ankle-foot orthosis with feedback control.