• Title/Summary/Keyword: Joint Stiffness

Search Result 821, Processing Time 0.033 seconds

A Study on the Joint Stiffness of Automotive Structural Model (차체구조 모형의 조인트 해석에 관한 연구)

  • Mun, Yong-Mo;Jee, Tae-Han;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1445-1457
    • /
    • 1996
  • In building a finite element model of as automotive structure, the pillars and rockers are generally modeled as beam elemnts. The finite elemtns modeling using beam is faster and more efficient than that using shell elemetns. A joint is defined as theintersectio region of beam elemts and generally modeled with coupled rotational springs. In this study, hoint modeling technique is presented. First, the definitions of and anlaysis hypothesis for the joint are defined. Second the evaluation method of the joint stiffness from the static test is proposed. This method is simpler than existing evaluaiton methods. Third, the sensitivity analysis method and updating algorithm forjoint stiffness are presented. To verify these melthods, the finite element results of structural models with rigid joints and rotational spring joints are compared with experimental results.

Maximum Thrust Condition by Compliant Joint of a Caudal Fin for Developing a Robotic Fish (물고기 로봇 개발을 위한 유연한 꼬리 지느러미 관절의 강성에 따른 최대 추력 조건 연구)

  • Park, Yong-Jai;Jeong, U-Seok;Lee, Jeong-Su;Kwon, Seok-Ryung;Kim, Ho-Young;Cho, Kyu-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.103-109
    • /
    • 2012
  • Fish generates large thrust through an oscillating motion with a compliant joint of caudal fin. The compliance of caudal fin affects the thrust generated by the fish. Due to the flexibility of the fish, the fish can generate a travelling wave motion which is known to increase the efficiency of the fish. However, a detailed research on the relationship between the flexible joint and the thrust generation is needed. In this paper, the compliant joint of a caudal fin is implemented in the driving mechanism of a robotic fish. By varying the driving frequency and stiffness of the compliant joint, the relationship between the thrust generation and the stiffness of the flexible joint is investigated. In general, as the frequency increases, the thrust increases. When higher driving frequency is applied, higher stiffness of the flexible joint is needed to maximize the thrust. The bending angles between the compliant joint and the caudal fin are compared with the changes of the thrust in one cycle. This result can be used to design the robotic fish which can be operated at the maximum thrust condition using the appropriate stiffness of the compliant joint.

Seismic behavior of steel reinforced concrete special-shaped column-beam joints

  • Liu, Z.Q.;Xue, J.Y.;Zhao, H.T.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.665-680
    • /
    • 2016
  • This paper focuses on the study of seismic behavior of steel reinforced concrete special-shaped column-beam joints. Six specimens, which are designed according to the principle of strong-member and weak-joint core, are tested under low cyclic reversed load. Key parameters include the steel form in column section and the ratio of column limb height to thickness. The failure mode, load-displacement curves, ductility, stiffness degradations, energy dissipation capacity and shear deformation of joint core of the test subassemblies are analyzed. The results indicate that SRC special-shaped column-beam joints have good seismic behavior. All specimens failed due to the shear failure of the joint core, and the failure degree between the two sides of joint core is similar for the exterior joint but different for the corner joint. Compared to the joints with channel steel truss, the joints with solid web steel skeleton illustrate better ductility and energy dissipation capacity, but the loading capacity and stiffness are roughly close. With the increasing of the ratio of column limb height to thickness, the joints illustrate higher loading capacity and stiffness, better energy dissipation capacity, but worse ductility.

Measurement of Shear Contact Characteristics on Mechanical Joints (기계 조인트의 전단 컨택 특성 측정)

  • Lee, Chul-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1350-1353
    • /
    • 2007
  • An experimental method based on contact resonance is developed to extract the contact parameters of mechanical joints under various clamped conditions. Mechanical joint parameters of shear contact stiffness and damping were extracted for different physical joint parameters such as surface finish of the mating surfaces, the presence of lubrication, the effect of the clamping pressure, and shear load. It was found that the shear contact stiffness values decreased with increasing clamping load and increased with increasing shear loading. Contact damping ratio values were almost constant with clamping load, but decreased with increasing shear load. Moreover, rough surfaces exhibited the highest shear stiffness and contact damping compared to smooth surfaces.

  • PDF

Robust Design of an Automobile Ball Joint Considering the Worst-Case Analysis (차량용 볼조인트의 최악 조건을 고려한 강건 설계)

  • Sin, Bong-Su;Kim, Seong-Uk;Kim, Jong-Kyu;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.102-111
    • /
    • 2017
  • An automobile ball joint is the element for connecting the control arm and the knuckle arm, allowing rotational motion. The ball joint consists of the stud, plug, socket, and seat. These components are assembled through the caulking process that consists of plugging and spinning. In the existing research, the pull-out strength and gap stiffness were calculated, but we did not consider the uncertainties due to the numerical analysis and production. In this study, the uncertainties of material property and tolerance are considered to predict the distributions of pull-out strength and gap stiffness. Also, pull-out strength and gap stiffness are predicted as the a distribution rather than one deterministic value. Furthermore, a robust design applying the Taguchi method is suggested.

Finite Elements Analysis Application to the Structural Design of the Frame Type Furniture (골조형(骨造型) 가구구조설계(家具構造設計)에의 유한요소해석 응용)

  • Chung, Woo-Yang;Eckelman, Carl A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.8-15
    • /
    • 1995
  • This analytical study was carried out to make quality and productivity up in designing the frame-type furniture with semi-rigid joint by understanding the mechanical and structural behavior of the joint and by evaluating the validity of application of the time-saving Finite Element Method to its structural analysis. Slope deflection equation for rigid joint was modified to describe the moment-rotation behavior of semi-rigid joint and the joint stiffness factor(Z) could be calculated to lessen the experimental expense. It was proved that Finite Element Analysis with imaginary elements having equivalent MOE to the semi-rigid joint could be the alternative method for the structural analysis of the frame-type furniture, comparing the internal rotation of the 2-dimensional beam-to-column model with two-pin(wooden dowel) from the finite element method with other available theoretical and experimental rotation value.

  • PDF