• 제목/요약/키워드: Joint Reaction Force

검색결과 181건 처리시간 0.03초

ZMP Compensation Algorithm for Stable Posture of a Humanoid Robot

  • Hwang, Byung-Hun;Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2271-2274
    • /
    • 2005
  • The desired ZMP is different from the actual ZMP of a humanoid robot during actual walking and stand upright. A humanoid robot must maintain its stable posture although external force is given to the robot. A humanoid robot can know its stability with ZMP. Actual ZMP may be moved out of the foot-print polygons by external disturbance or uneven ground surfaces. If the position of ZMP moves out of stable region, the stability can not be guaranteed. Therefore, The control of the ZMP is necessary. In this paper, ZMP control algorithm is proposed. Herein, the ZMP control uses difference between desired ZMP and actual ZMP. The proposed algorithm gives reaction moment with ankle joint when external force is supplied. 3D simulator shows motion of a humanoid robot and calculated data.

  • PDF

작업부하 평가를 위한 생체역학적 측정방법 (Biomechanical Measuring Techniques for Evaluation of Workload)

  • 김정룡;박지수;조영진
    • 대한인간공학회지
    • /
    • 제29권4호
    • /
    • pp.445-453
    • /
    • 2010
  • It is necessary to quantitatively evaluate the workload of workers in order to improve the level of safety and efficiency as well as to prevent workers from musculoskeletal disorders. The purpose of this study is to introduce biomechanical methods that are largely used to quantitatively evaluate workload. The biomechanical methods use kinematics and kinetics to analyze the movement and force of biomechanical body. Motion analysis, joint angle measurement, ground reaction force, mathematical model, and electromyography (EMG) were introduced as a tool or device for biomechanical evaluation. In this study, the special feature of each method was emphasized and important tips for field measurement were summarized. The information and technique disclosed in this summary can be used to evaluate and design the workplace better by effectively control the workload of field workers.

하지근력의 좌우 비대칭성이 드롭랜딩 시 동적 안정성에 미치는 영향 (The Effect of Asymmetric Muscle Force in the Lower Extremity on Dynamic Balance on during Drop Landing)

  • 김철주;이경일;홍완기
    • 한국운동역학회지
    • /
    • 제21권2호
    • /
    • pp.173-179
    • /
    • 2011
  • This study aims to analyse difference in biomechanical factors between dominant legs and recessive ones according to muscular imbalance during drop landing targeting talented children in sports. The subjects of the study were ten primary students who are attending to Sports Program for Talented Children organized by C university (age: $12.28{\pm}0.70$ year, height: $1.52{\pm}0.11$ m, and weight: $45.2{\pm}4.9$ kg). Strength legs were classified into dominant side and strengthless legs were classified into non-dominant legs. For three-dimensional analyses of the data collected, 6 video cameras(MotionMaster200, Visol, Korea) were used. To analyse ground reaction force, two force platforms(AMTI ORG-6, MA) were used and to analyse electromyograghy a 8-channeled wireless Noraxon Myoresearch made in USA was used at 1000 Hz for sampling. As a result, it was discovered that the dominants legs controlled knee bending motions more stably than strengthless legs as the maximum vertical ground reaction force was significantly high in dominant legs(p<.05), and joint moment of knee joints of the dominant legs was high(p<.05). Therefore, this study suggested that injury prevention program focusing on muscular balance as well as the existing sports programs for talented children should be developed based on results of the study and it is expected that the results will be useful for improvement of sports programs for talented children.

근육의 힘이 신체 각 부분의 가속도에 미치는 영향 (Muscle-Induced Accelerations of Body Segments)

  • 강곤
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1967-1974
    • /
    • 1991
  • 본 연구에서는 근육수축에 의해 발생되는 각 신체부분의 각가속도의 방향이 다음 두가지 요소의 변화에 따라 어떻게 달라지는가를 중점적으로 살펴보기로 한다` (1) 신체매개변수(body-segmental parameter): 길이, 무게 등, (2) 신체 각 부분의 위치. 이러한 상관관계를 더욱 명확히 이해함으로써, 주어진 운동(given task)을 FES 에 의해 수행하고자 할 때 전기적으로 자극되어야 할 근육을 사전에 선택할 수 있을 것이다.

Effects of Functional Footwear Designed for Decreasing Ground Reaction Force on Ankle and Foot Range of Motion During Gait in Healthy Individuals

  • Kim, Yong-Wook
    • 대한물리의학회지
    • /
    • 제13권3호
    • /
    • pp.113-120
    • /
    • 2018
  • PURPOSE: This study was conducted to investigate the characteristics of a specific functional shoe in terms of the range of motion (ROM) of ankle and foot joints during walking when compared to a standardized shoe. METHODS: Kinematic ROM data pertaining to ankle, tarsometatarsal, and metatarsophalangeal joints were collected from twenty-six healthy individuals during walking using a ten-camera motion analysis system. Kinematic ROM of each joint in three planes was obtained over ten walking trials consisting of two different shoe conditions. Visual3D motion analysis was finally used to coordinate the kinematic data. All kinematic ROM data were interpolated using a cubic spline algorithm and low-pass filtered with a cutoff frequency of 6 Hz for smoothing. RESULTS: The overall ROM of the ankle joint in the sagittal and coronal planes when wearing the specific functional shoe was significantly decreased in both ankles during walking when compared to wearing a standard shoe (p<.05). Significantly more flexibility was observed when wearing the specific functional shoe in the tarsometatarsal and metatarsophalangeal joints compared to a standard shoe (p<.05). CONCLUSION: Although clinical application of the specific functional shoe has shown clear positive effects on knee and ankle moments, the results of this study provide important background information regarding the kinematic mechanisms of these effects.

정상 성인의 운동역학적 보행분석 (A Study on Kinetic Gait Analysis of the Normal Adult)

  • 김건;윤나미
    • The Journal of Korean Physical Therapy
    • /
    • 제21권2호
    • /
    • pp.87-95
    • /
    • 2009
  • Purpose: This study reports the basic reference data of the specific gait parameters for Korean normal adults. Methods: The basic gait parameters were extracted from 73 Adults (35 men and 38 women), 18 to 33 years of age, using a Vicon MX motion analysis system. The segment kinetics, such as joint moment and power, was analyzed at the hip, knee and ankle. Results: The motion patterns are typically associated with a specific phase of the gait cycle. The temporal-spatial gait parameters of Korean normal adults, such as cadence, walking speed, stride length, single support and double support, were similar to the other western reference data. The kinetic parameters of Korean normal adults, such as joint moments of force, joint mechanical power generation or absorption and ground reaction forces, were also similar to other western reference datasets. Conclusion: This study demonstrates that objective gait analysis can be used to document the gait patterns of normal healthy adults. The techniques of 3-dimensional temporal-spatial gait parameters and kinematic parameters analysis can provide a detailed biomechanical description of a normal and pathological gait.

  • PDF

Change in Kinetics and Kinematics during 1-Footed Drop Landing with an Increase in Upper Body Weight

  • Lee, Jin-Taek;David, O'Sullivan
    • 한국운동역학회지
    • /
    • 제21권1호
    • /
    • pp.1-7
    • /
    • 2011
  • The purpose of this study was to investigate changes in kinetic and kinematic variables associated with an increase in upper body weight. Eighteen healthy male university students($175.96{\pm}4.19\;cm$, $70.79{\pm}8.26\;kg$) participated. Eight motion analysis cameras(Qualysis Oqus 500) and 2 force AMTI platforms(Advanced Mechanical Technologies Inc. OR6-7, US) were used to record motion and forces during the drop landing at a frequency of 120 Hz and 1200 Hz, respectively. QTM software(Qualisys Track Manager) was used to record the data, and the variables were analyzed with Visual 3D and Matlab 2009. For the drop landing, a box of $4{\times}2{\times}0.46\;m$ was constructed from wood. Knee and ankle maximum flexion angle, knee flexion angle, knee and ankle angle at landing, time for maximum ankle flexion after landing, and time for maximum knee flexion after landing were calculated. There was a significant change in the time for maximum and minimum ground force reaction and the time for maximum dorsal flexion after landing(p<.05) with increasing weight. There was no significant change for the hip, knee, and ankle ROM, whereas there was an increase in the angle ROM as the weight increased, in the order of ankle, knee, and hip ROM. This result shows that the ankle joint ROM increased with increasing weight for shock attenuation during the drop landing. There was a trend for greater ankle ROM than knee ROM, but there was no clear change in the ROM of the hip joint with increasing weight. In conclusion, this study shows the importance of ankle joint flexibility and strength for safe drop landing.

전자 패키징에 사용되는 무연 솔더에 관한 열역학적 연구 (Thermodynamic Issues of Lead-Free Soldering in Electronic Packaging)

  • 정상원;김종훈;김현득;이혁모
    • 마이크로전자및패키징학회지
    • /
    • 제10권3호
    • /
    • pp.37-42
    • /
    • 2003
  • 전자 패키징에 사용되는 솔더합금에 납을 함유됨으로써 인하여 야기되는 환경적 문제와 인체 유해성 때문에 Pb-Sn 합금계를 대체할 수 있는 새로운 무연 솔더 재료의 필요성이 대두되고 있다. 새로운 솔더합금의 개발에 있어서 솔더 조인트의 신뢰성이 가장 중요한 문제라고 할 수 있는데, 솔더 조인트의 신뢰성은 솔더와 기판 사이의 계면 반응 형태와 그 정도에 의해서 크게 영향을 받기 때문에 솔더와 기판 사이의 계면 현상에 관한 더 깊은 이해가 필요하게 된다 솔더링 동안 기판/솔더 계면에서 가장 먼저 생성되는 금속간 화합물의 상을 예측하기 위한 열역학적인 방법이 제안되었다. 계면 에너지와 석출 구동력의 함수로 표현되는 각각의 금속간 화합물에 대한 핵생성 활성화 에너지를 비교함으로써 활성화 에너지가 가장 낮은 금속간 화합물이 가장 먼저 생성된다고 예측하였다. 거기에 더해 에너지를 기반으로 한 계산을 통하여 솔더 조인트에서 금속간 화합물의 입자 형상을 설명하였다. 울퉁불퉁한 계면을 가진 금속간 화합물의 Jackson의 parameter 값은 2보다 작은 반면 평평한 입자의 경우 2보다 크게 된다.

  • PDF

탄력 테이핑이 만성 발목 불안정 환자의 착지 후 방향 전환 시 하지 관절 움직임에 미치는 영향 (The Effect of Elastic Therapeutic Taping on Lower Limb Kinematics during a Cross Cutting Movement from Landing in Subjects with Chronic Ankle Instability)

  • 조태성;김택훈;최흥식;노정석
    • 대한물리의학회지
    • /
    • 제12권4호
    • /
    • pp.1-9
    • /
    • 2017
  • PURPOSE: This study investigated the effect that an elastic therapeutic taping treatment given to patients with chronic ankle instability had on the vertical ground reaction force, center of pressure, and range of motion in the ankle, knee and hip joints, during a Cross-cutting movement from landing. METHODS: This study analyzed 12 able-bodied adults and 12 patients with chronic ankle instability classified by using the Cumberland tool in the motion analysis laboratory, Hanseo University. The experiment was conducted under two conditions elastic taping and no treatment. In order to analyze the difference between the groups. An independent t-test was performed at p>.01. RESULTS: Plying an elastic therapeutic taping to the patients with chronic ankle instability significantly decreased the range of joint motion in the inversion of the ankle joint, the flexion of the knee joint, and the flexion and internal rotation of the hip joint during a cross-cutting movement from landing in comparison with the able-bodied adults p<.01. This restriction in the range of motion decreased the center-of-pressure trajectory length of patients with chronic ankle instability p>.01. CONCLUSION: An elastic therapeutic taping treatment given to patients with chronic ankle instability causes ankle stability to increase during a cross-cutting movement from landing.

Kinematic Characteristics Based on Proficiency In Geoduepyeopchagi in Taekwondo Poomsae Koryo

  • So, Jae Moo;Kang, Sung-Sun;Hong, AhReum;Jung, Jong Min;Kim, Jai Jeong
    • 한국운동역학회지
    • /
    • 제26권4호
    • /
    • pp.343-351
    • /
    • 2016
  • Objective: The purpose of this study was to help improve game performance and provide preliminary data to enhance the efficiency of the kick and stability of the support foot by comparing the kinematic characteristics of the repeated side kick (geodeupyeopchagi) in poomsaeKoryo between expert and non-expert groups. Method: The subjects were divided into 2 groups according to proficiency in Taekwondo, an expert group and a non-expert group (n = 7 in each group), to observe the repeated side-kick technique. Four video cameras were set at a speed of 60 frames/sec and exposure time of 1/500 sec to measure the kinematic factors of the 2 groups. The Kwon3D XPprogramas used to collect and analyze three-dimensional spatial coordinates. Ground reaction force data were obtained through a force plate with a 1.200-Hz frequency. An independent samplesttest was performed, and statistical significance was defined as .05. The SPSS 18.0 software was used to calculate the mean and standard deviation of the kinematic factors and to identify the difference between the experts and non-experts. Results: The angular displacement of the hip joint in both the expert and non-expert groups showed statistical significance on E1 and E4 of the left support foot and E5 of the right foot (p<.05). The angle displacement of the knee joint in both groups showed statistical significance on E4 of the left support foot, and E1 and E2 of the right foot (p<.05). The angular velocity of the lower leg in both groups showed no statistical significance on the left support foot but showed statistical significance on E2 and E6 of the right foot (p<.05). The angular velocity of the foot in both groups showed no statistical significance on the left support foot but showed statistical significance on E2 of the right foot (p<.05). The vertical ground reaction force in both groups showed statistical significance on E2 (p<.05). The center of pressure in all directions in both groups showed statistical significance (p<.5). Conclusion: While performing the repeated side kick (geodeupyeopchagi), the experts maintainedconsistency and stability of the angle of the support leg while the kick foot moved high and fast. On the other hand, the angle of the support foot of non-experts appeared inconsistent, and the kick foot was raised, relying on the support leg, resulting in unstable and inaccurate movement.