• 제목/요약/키워드: Joint Reaction Force

검색결과 181건 처리시간 0.028초

개방형 프레임 구조물의 볼트 조인트 강도해석 (Strength Analysis of Bolt Joints for an Open Frame Structure)

  • 이진민;이민욱;조수길;구만회;김학인;이태희
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.819-825
    • /
    • 2009
  • An open frame structure is fastened by bolt joints for strength and shock attenuation. Therefore the full finite element model of an open frame structure should be properly modeled including bolt joints for strength analysis of the frames and joint assemblies which are operated under multi-loading conditions such as driving, drop, inertia and torsional loads. Then the joints and frames must satisfy the specified allowable strength constraints. Because the full finite element model has a large number of elements to perform strength analysis, a detailed fine bolt analysis seems to be very expensive. Therefore bolts of the full finite element model are approximately modeled by coupling method to constrain degree of freedoms between adjacent nodes. However, the coupling method can exaggerate stress results at the constrained nodes. Thus a detailed bolt analysis and a theoretical/experiential formula of bolts for a worst bolt joint are performed using reaction force applied both bolt and bolt joint. Finally, the results from the two methods are compared and discussed to verify the safety of the open frame structure.

개방형 프레임 구조물의 볼트 조인트 강도설계 (Strength Design of Bolt Joints for an Open Frame Structure)

  • 이진민;이민욱;조수길;구만회;김학인;이태희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.523-528
    • /
    • 2008
  • An open frame structure is fastened by bolt joints for strength and shock attenuation. Therefore the full finite element model of an open frame structure should be properly modeled including bolt joints for strength analysis of the frames and joint assemblies which are operated under multi-loading conditions such as driving, drop, inertia and torsional loads. Then the joints and frames must satisfy the specified allowable strength constraints. Because the full finite element model has a large number of elements to perform strength analysis, a detailed fine bolt analysis seems to be very expensive. Therefore bolts of the full finite element model are approximately modeled by constraints equations to constrain degree of freedoms between adjacent nodes. However, the constraints equation method can exaggerate stress results at the constrained nodes. Thus a detailed bolt analysis and a theoretical/experiential formula of bolts for a worst bolt joint are performed using reaction force applied both bolt and bolt joint. Finally, the results from the two methods are compared and discussed to verify the safety of the open frame structure.

  • PDF

소형견의 선천성 어깨관절 탈구에 관한 운동역학적 보행 분석 (Kinetic gait analysis in a small sized dog with congenital shoulder luxation)

  • 이신호;김충희;조재현
    • 한국동물위생학회지
    • /
    • 제46권2호
    • /
    • pp.175-179
    • /
    • 2023
  • This study was conducted to find out the compensation strategy through kinetic gait analysis by comparing dog with congenital luxation of the shoulder joint and normal dog. Ground reaction forces were recorded for all limbs while normal poodle dog and poodle dog with shoulder joint luxation was allowed to walk on an instrumented platform. The dogs were evaluated for maximal vertical force (MVF), body load distribution (BLD), and symmetry index (SI). The MVF was increased in the contralateral forelimb of luxated shoulder joint. The SI was also increased in a dog with dislocated shoulder joints in the forelimbs. For BLD, the maximum load distribution increased centrally, but the total load distribution decreased in the ipsilateral forelimb paw. In contrast, total load distribution was increased in the contralateral forelimb paw. During forelimb lameness, changes in weight-bearing load showed compensatory load redistribution. These biomechanical changes may lead to changes in the musculoskeletal system in a dog with luxated shoulder.

The Effect of Foot Landing Type on Lower-extremity Kinematics, Kinetics, and Energy Absorption during Single-leg Landing

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • 한국운동역학회지
    • /
    • 제27권3호
    • /
    • pp.189-195
    • /
    • 2017
  • Objective: The aim of this study was to examine the effect of foot landing type (forefoot vs. rearfoot landing) on kinematics, kinetics, and energy absorption of hip, knee, and ankle joints. Method: Twenty-five healthy men performed single-leg landings with two different foot landing types: forefoot and rearfoot landing. A motion-capture system equipped with eight infrared cameras and a synchronized force plate embedded in the floor was used. Three-dimensional kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of .05. Results: On initial contact, a greater knee flexion angle was shown during rearfoot landing (p < .001), but the lower knee flexion angle was found at peak vertical ground reaction force (GRF) (p < .001). On initial contact, ankles showed plantarflexion, inversion, and external rotation during forefoot landing, while dorsiflexion, eversion, and internal rotation were shown during rearfoot landing (p < .001, all). At peak vertical GRF, the knee extension moment and ankle plantarflexion moment were lower in rearfoot landing than in forefoot landing (p = .003 and p < .001, respectively). From initial contact to peak vertical GRF, the negative work of the hip, knee, and ankle joint was significantly reduced during rearfoot landing (p < .001, all). The contribution to the total work of the ankle joint was the greatest during forefoot landing, whereas the contribution to the total work of the hip joint was the greatest during rearfoot landing. Conclusion: These results suggest that the energy absorption strategy was changed during rearfoot landing compared with forefoot landing according to lower-extremity joint kinematics and kinetics.

Evaluation of Biomechanical Movements and Injury Risk Factors in Weight Lifting (Snatch)

  • Moon, YoungJin
    • 한국운동역학회지
    • /
    • 제26권4호
    • /
    • pp.369-375
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the possibility of injuries and the types of movement related to damage by body parts, and to prepare for prevention of injuries and development of a training program. Method: For this study, the experiment was conducted according to levels of 60 percentages (ST) and 85 percentages (MA) and 10 subjects from the Korean elite national weightlifting team were included. Furthermore, we analyzed joint moment and muscle activation pattern with three-dimensional video analysis. Ground reaction force and EMG analyses were performed to measure the factors related to injuries and motion. Results: Knee reinjuries such as anterior cruciate ligament damage caused by deterioration of the control ability for the forward movement function of the tibia based on the movement of the biceps femoris when the rectus femoris is activated with the powerful last-pull movement. In particular, athletes with previous or current injuries should perceive a careful contiguity of the ratio of the biceps femoris to the rectus femoris. This shows that athletes can exert five times greater force than the injury threshold in contrast to the inversion moment of the ankle, which is actively performed for a powerful last pull motion and is positively considered in terms of intentional motion. It is activated by excessive adduction and internal rotation moment to avoid excessive abduction and external rotation of the knee at lockout motion. It is an injury risk to muscles and ligaments, causing large adduction moment and internal rotation moment at the knee. Adduction moment in the elbow joint increased to higher than the injury threshold at ST (60% level) in the lockout phase. Hence, all athletes are indicated to be at a high risk of injury of the elbow adductor muscle. Lockout motion is similar to the "high five" posture, and repetitive training in this motion increases the likelihood of injuries because of occurrence of strong internal rotation and adduction of the shoulder. Training volume of lockout motion has to be considered when developing a training program. Conclusion: The important factors related to injury at snatch include B/R rate, muscles to activate the adduction moment and internal rotation moment at the elbow joint in the lockout phase, and muscles to activate the internal rotation moment at the shoulder joint in the lockout phase.

성인의 하향계단 보행 시 중량에 따른 하지의 운동역학적 변인 분석 (Biomechanical Analysis of the Effect that Various Loads has on the Lower Limbs while Descending Stairs)

  • 문제헌;천영진
    • 한국운동역학회지
    • /
    • 제23권3호
    • /
    • pp.245-252
    • /
    • 2013
  • The purpose of this study was to analyze the effect that various loads have on the lower limb biomechanics. The following variables were measured and analyzed; performance time for each phase, lower limb moments and joint angles, and ground reaction forces. The kinematic and kinetic data was recorded by 2 force platforms and a motion capture system while 12 healthy adults in their twenties stepped down three steps under loads of 0%, 10%, 20% BW. Results are as follows. First, the different loading conditions did not seem to significantly affect the performance times and the joint angles. Second, the largest ground reaction forces were observed at the 1 step at the 10% BW condition. Finally, at the 0% BW loading condition the right hip extension moment was the smallest and the left hip flexion moment was the largest. The results show that there are not any significant changes in the biomechanics of the lower limbs under loading conditions up to 20% BW. Further investigations including more loading conditions with more weights and more additional steps analyzed are needed.

지역사회중심재활운동이 여성 슬관절염 환자의 신체기능에 미치는 효과 (The Efficacy of Community-Based Rehabilitation Exercise to Improve Physical Function in Old Women with Knee Arthritis)

  • 김수민;송주민
    • The Journal of Korean Physical Therapy
    • /
    • 제22권1호
    • /
    • pp.9-17
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the effects of Tai-Chi exercise (TCE) and resistance exercise (RE) when used as part of a community-based exercise program on improvement of physical function in elderly women with knee arthritis. Methods: Forty-seven women with knee arthritis participated in this study. They were assigned to one of two groups: the TCE group (n=22) or the RE group (n=25). Tai-Chi exercise and resistance exercise sessions were held for 1 hour per session, twice per week, for 8 consecutive weeks. At pre-treatment and post-treatment, subjects were tested using the following measurements: one-legged stand test (sec), a functional reach test (cm), a test of the strength of the knee extensor and flexor muscles, determination of the pathway of center of foot pressure and vertical ground reaction force for stance phase at pre and post treatment time points. An independent t-test and a ${\chi}^2$ were used to determine the significance of differences between group means using SPSS 12.0. Results: After 8 weeks of participation in the exercise programs, there were significant improvements for both groups in joint pain, difficulty of performing activity, muscle strength of knee extensor and flexor. Also, vertical ground reaction force increased at the loading response phase for both groups. The RE group was significantly different from TC group on the eyes-closed one-legged stand test (sec). Conclusion: Tai-Chi exercise and resistance exercise programs improve physical functioning and reduce pain and locomotion difficulties.

보행 시 신발의 아웃솔 형태가 하지 관절 운동과 발의 압력에 미치는 영향 (The Effect of Form and Hardness of Outsoles on the Motion of the Lower Extremity Joints and on Foot Pressure during Gait)

  • 김의환;김성섭;권문석;위웅량;임정;정재욱
    • 한국운동역학회지
    • /
    • 제21권2호
    • /
    • pp.223-230
    • /
    • 2011
  • The purpose of this study was to analysis the effect of form and hardness of outsoles on the motion of the lower extremity joints and on foot pressure during gait. The subjects were 15 women(mean age, $48.5{\pm}2.4$ years), who had no serious musculoskeletal, coordination, balance or joint/ligament problems within 1 year prior to the study. The pelvic tilt, joint angles at the lower extremities and the vertical ground reaction force(GRF) were compared during gait with 3 types of shoes (A, B, C) by using one-way repeated ANOVA(p<.05). During gait, the peak tilt angle and the range of motion(ROM) of the ankle and knee joints were found to be significantly different among the 3 types of shoes. The type C shoes showed a significantly lower mean second maximum vertical GRF than types A and B. The curved outsoles of type C shoes, which had a form and hardness different from those of A and B, was designed strategically for walking shoes to provide stability to the Additionally, type C induced the dispersion of eccentric pressure and made the center of pressure roll over to the center line of the foot.

모바일 하버 컨테이너 적재 유도 시스템에서 롤러 가이드 적용 및 해석 (Analysis of a Roller Guide Container Stacking System Applicable to the Mobile Harbor)

  • 오태오;박정홍;김광훈;손권
    • 설비공학논문집
    • /
    • 제23권9호
    • /
    • pp.620-626
    • /
    • 2011
  • The purpose of this study is to evaluate a simulation model of a stacking guidance system (SGS) with a roller guide applicable to the mobile harbor. The study used a small-scale model (1/20) made of wood with rollers in order to compare the dynamic analysis with experiment results. The law of similarity was applied for the validation of the scaled model. In order to construct a more realistic simulation model, the damping coefficient of the dynamic model was adjusted to 0.5 Ns/mm for the wood-to-wood contact condition based on the experimental results. Using this validated model, dynamic simulations were also carried out for containers of 20, 30, and 40 tons. The results showed that the reaction force of the roller guide was increased from 74.7 kN to 91.2 kN as the weight of container increased. For the design of a roller guide for SGS, the results obtained in this study can be used to reduce the reaction force by employing a rubber roller or a highly damped rotational joint.

Musculoskeletal Model for Assessing Firefighters' Internal Forces and Occupational Musculoskeletal Disorders During Self-Contained Breathing Apparatus Carriage

  • Wang, Shitan;Wang, Yunyi
    • Safety and Health at Work
    • /
    • 제13권3호
    • /
    • pp.315-325
    • /
    • 2022
  • Background: Firefighters are required to carry self-contained breathing apparatus (SCBA), which increases the risk of musculoskeletal disorders. This study assessed the newly recruited firefighters' internal forces and potential musculoskeletal disorders when carrying SCBA. The effects of SCBA strap lengths were also evaluated. Methods: Kinematic parameters of twelve male subjects running in a control condition with no SCBA equipped and three varying-strapped SCBAs were measured using 3D inertial motion capture. Subsequently, motion data and predicted ground reaction force were inputted for subject-specific musculoskeletal modeling to estimate joint and muscle forces. Results: The knee was exposed to the highest internal force when carrying SCBA, followed by the rectus femoris and hip, while the shoulder had the lowest force compared to the no-SCBA condition. Our model also revealed that adjusting SCBA straps length was an efficient strategy to influence the force that occurred at the lumbar spine, hip, and knee regions. Grey relation analysis indicated that the deviation of the center of mass, step length, and knee flexion-extension angle could be used as the predictor of musculoskeletal disorders. Conclusion: The finding suggested that the training of the newly recruits focuses on the coordinated movement of muscle and joints in the lower limb. The strap lengths around 98-105 cm were also recommended. The findings are expected to provide injury interventions to enhance the occupational health and safety of the newly recruited firefighters.