• Title/Summary/Keyword: Joint Pattern

Search Result 626, Processing Time 0.026 seconds

Relocation of plastic hinge in exterior beam-column joints using inclined bars

  • P.Asha;R.Sundararajan;K.Kumar
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.317-329
    • /
    • 2024
  • Recent earthquakes have demonstrated that even when the beams and columns in a reinforced concrete frame remain intact, the integrity of the whole structure is undermined if the joint where these members connect fails. A good seismic performance of reinforced concrete frames depends on their ability to absorb seismic energy through inelastic deformations and to avoid a sudden development of collapse mechanism in event of a strong earthquake shaking. The primary objective of this investigation is to move the plastic hinge away from the beam-column joint region and hence reducing the damage to the joint region. In this research, the seismic performance of exterior beam-column joints with four types of confinement in joint region and inclined bars from column to beam is investigated experimentally. Control specimens without inclined bars and four types of confinement Square Hoop, Square Spiral, Circular Hoop and Circular Spiral were tested along with inclined bars were tested. Seismic performance was determined via load-deflection response, ductility, stiffness, energy dissipation, strain of beam reinforcement and crack pattern. Out of the four specimens with inclined bars, seismic performance of joint with Square Spiral confinement gave the best performance in terms of all parameters.

A Study of Lower Extremities Joint Moment Pattern by Stance Types in Tennis Serve (테니스 서브 스탠스 유형별 하지관절 모멘트의 패턴 연구)

  • Kim, Sung-Sup;Kim, Eui-Hwan;Kim, Euy-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.41-48
    • /
    • 2008
  • The purpose of this study was to analyze the lower extremities joint moment pattern by two types of service motion in tennis pinpoint and platform stance. Seven skilled high school tennis players participated, and the kinematics were recorded by the Vicon motion analysis system. For the gathering and analysis of the data Workstation, Bodybuilder and polygon were used. joint moments and Ground Reaction Forces for the phases involved were analyzed with the following results. There was a different moment pattern for the lower extremities between the two serve motions. For the platform stance there was only a large dorsal flexion moment but for the pinpoint stance there were other large moments. The flexion and maximum moment of the lower extremities occurred at the point of change from back swing and to the forward swing motion. Therefore, this data provides evidence that there is a high risk of injury at this point.

THE EFFECTS OF INCISON OF RETRODISCAL TISSUE AND OCCLUSAL REDUCTION ON TEMPOROMANDIBULAR JOINT OF RABBIT (가토에서 관절원판 후조직 절단 및 교합고경 감소가 악관절에 미치는 영향)

  • Lee, Byeong-Seok;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.23 no.4 s.43
    • /
    • pp.645-660
    • /
    • 1993
  • In this study, effects of incision of retrodiscal tissue and unilateral occlusal reduction on temporomandibular joint of rabbit were investigated. Twenty-seven adult New Zealand White Rabbits, weighing over 3.5kg, were utilized in this study. Temporomandibular joint surgery was performed in left temporomandibular joint of 24 rabbits to displace disc anteriorly through incising the retrodiscal tissue 1-2mm posterior to the disc. They were divided into two groups : twelve were left untreated after surgery, occlusal reduction was performed on left posterior teeth every 2 weeks in the other twelve rabbits, The remaining three served as the control group. The sample were sacrificed by 8, 12, and 16 weeks after surgery. Histologic examinations were performed after sacrificing them. The results were as follows : 1. Histologic findings which were manifested by flat articular fossa, broad articular surface, generalized recession of articular cartilage and sclerosis of subchondral bone were observed. These findings were similar to internal derangement. 2. In the rabbits untreated after surgery, thin cartilagenous layer and necrotic tissue were observed in 8 weeks group, calcifying cartilagenous layer was observed in 12 weeks group, and cartilagenous layer on anterior portion was observed in 16 weeks group. So, it showed gradual healing pattern into the normal tissue except displaced disc. 3. Occlusal trauma after surgery resulted in generalized recession of upper and lower articular surface. Necrosis and vertical split on condylar process of mandible were observed in 8 weeks group. Osteoclasts, exposure of subchondral bone due to erosion on upper and lower articular surface, and degenerative changes on retrodiscal tissue were observed in 16 weeks group. So, it showed continuous prowess pattern of osteoarthrosis.

  • PDF

Effects of Differential Stability on Control of Multi-Joint Coordination in the Upper Extremity: A Torque Component Analysis

  • Ryu, Young Uk;Shin, Hwa Kyung
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • Purpose: The purpose of the present current study was to examine control of upper limb multi-joint movements with differential coordination stability. To achieve the goals of the study, torque analyses were utilized to answer questions about how torque components were differed among various elbow-wrist coordination patterns. Methods: Eight self-reported right-handed college students (3 males and 5 females, mean age=20.6 yr) were volunteered. The task required participants to rhythmically coordinate the flexion-extension motions of their elbow and wrist with coordination relationship of $0^{\circ}$, $90^{\circ}$, and $180^{\circ}$relative phases between the two joints. Mean relative phase and phase stability (standard deviation of relative phase) were computed to for analysisze of overall coordination performance. To determine the figure out characteristics of torque components in elbow and wrist joints, impulse values of muscle torque (MT) and interactive torque (IT) and MT as a percentage of cycle duration (MT-PCD) were analyzed. Results: Torque results showed that the proximal elbow joint generated motions with mainly muscle efforts regardless of coordination patterns, while the distal wrist joint adjusted the coordination patterns by changing amount of MT. Impulse analyses showed that the least stable $90^{\circ}$ pattern was performed by utilizing a similar coordination strategy of the most stable $0^{\circ}$ pattern. Conclusion: The present current study suggests that the roles of distal and proximal joints differ in order to achieve various multi-joint coordination movements. This study provides information for use in gives an idea to development of rehabilitation or training programs for to persons with an impaired upper limb motor ability.

Experimental and numerical studies of the pre-existing cracks and pores interaction in concrete specimens under compression

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.479-493
    • /
    • 2019
  • In this paper, the interaction between notch and micro pore under uniaxial compression has been performed experimentally and numerically. Firstly calibration of PFC2D was performed using Brazilian tensile strength, uniaxial tensile strength and biaxial tensile strength. Secondly uniaxial compression test consisting internal notch and micro pore was performed experimentally and numerically. 9 models consisting notch and micro pore were built, experimentally and numerically. Dimension of these models are 10 cm*1 cm*5 cm. the length of joint is 2 cm. the angularities of joint are $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. For each joint angularity, micro pore was situated 2 cm above the lower tip of the joint, 2 cm above the middle of the joint and 2 cm above the upper of the joint, separately. Dimension of numerical models are 5.4 cm*10.8 cm. The size of the cracks was 2 cm and its orientation was $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. Diameter of pore was 1cm which situated at the upper of the notch i.e., 2 cm above the upper notch tip, 2 cm above the middle of the notch and 2 cm above the lower of the notch tip. The results show that failure pattern was affected by notch orientation and pore position while uniaxial compressive strength is affected by failure pattern.

Image retrieval using block color characteristics and spatial pattern correlation (블록 컬러 특징과 패턴의 공간적 상관성을 이용한 영상 검색)

  • Chae, Seok-Min;Kim, Tae-Su;Kim, Seung-Jin;Lee, Kun-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.9-11
    • /
    • 2005
  • We propose a new content-based image retrieval using a block color co-occurrence matrix (BCCM) and pattern correlogram. In the proposed method, the color feature vectors are extracted by using BCCM that represents the probability of the co-occurrence of two mean colors within blocks. Also the pattern feature vectors are extracted by using pattern correlogram which is combined with spatial correlation of pattern. In the proposed pattern correlogram method. after block-divided image is classified into 48 patterns with respect to the change of the RGB color of the image, joint probability between the same pattern from the surrounding blocks existing at the fixed distance and the center pattern is calculated. Experimental results show that the proposed method can outperform the conventional methods as regards the precision and the size of the feature vector dimension.

  • PDF

An Analysis of Shoulder Joint Torque and Muscle Pattern Duing Tennis Serve by Isokinetic Motions on Isomed 2000 (Isomed 2000을 이용한 고등학교 테니스 선수 서브동작의 어깨관절 회전력과 근동원 양상 분석)

  • Kim, Sung-Sup;Kim, Eui-Hwan;Sung, Young-Ho;Kim, Tae-Whan;Chung, Jae-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.61-68
    • /
    • 2007
  • The purpose of this study was to analyze the shoulder joint torque and muscle pattern performing as Tennis serve by Isokinetic motions on Isomed 2000. The subject, who was 5 males Korean national high school tennis players. By analyzing the flexion/extension of the shoulder, the peak torque of the internal/external rotation motion(at 60,180 and 300 degree/sec) at peak torque degree, the weight, peak torque, and power. combined with the timing of the electrode of the attached trapezius and posterior deltoid at the three part. From the data analysis & discussion the following conclusions were drawn. When doing a shoulder extension, the peak torque can be widely seen at 60degree per second. However the degree may be different depending on angular velocity. When doing an internal rotation at 90degree abduction, peak torque per weight was seen at 60degree per second. The degree of peak torque was at 31.6-44.2 and peak power was faster when angular velocity was increased. The aspect of muscle pattern was seen more at the internal rotation in the 90degree abduction rather than the shoulder extension. However the angular velocity was not influenced by muscle mobilization(in order of anterior deltoid, posterior deltoid and trapezius. To properly apply the above conclusion, when tennis players serve it is better the elbow be impacted by the extension. when doing isokinetic motion it is better to increase angular velocity and improve muscle power. also the anterior deltoid amongst the shoulder muscle should be improved to develop serve speed.

Applying Design Pattern & Refactoring on Implementing RTOS for the Small Educational Multi-Joint Robot (소형 교육용 다관절로봇 RTOS 구현을 위한 디자인 패턴 & 리팩토링 적용)

  • Son, Hyun-Seung;Kim, Woo-Yeol;Ahn, Hong-Young;Kim, Robert Young-Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.217-224
    • /
    • 2009
  • The traditional small educational multi-joint robots were developed on firmware. In these system's case, we cann't give a chance to educate good practices due on executing just robot's simple movements. But it may be possible for RTOS to control the elaborate movement of the robot with assembling each part on firmware. With this RTOS, we can enhance the efficiency of robot's movements, but too difficult to use the education as increasing the complexity of robot system. To solve the problem, we apply with Design pattern and Refactoring for the Education. Applying robot's design with Design pattern and Refactoring. There may be easily understand what and how to design RTOS for any level ones. We may easily change/upgrade RTOS for new system with this approach. This paper mentions to design RTOS with Design patterns and to apply RTOS's source code with Refactoring.

  • PDF

Design of 1-DOF Walking Orthosis for Paralysis Patients (하지 마비 환자를 위한 1 자유도 보행 보조기 설계)

  • 정철희;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1137-1142
    • /
    • 2004
  • Walking training is one of the most important rehabilitation processes with paralysis patient. Walking training by using an orthosis can help advancing a patient's independent level. However, existing orthoses have some serious demerit of mechanical problem that the knee joint is locked in the state where it is completely extended, which increases energy consumption and fatigue. For this reason, it is suggested, for more practical orthosis, that the knee joint should be placed and it should have capability of suspending patient's weight. In this paper, 1-DOF walking orthosis which compensates the demerit of the existing orthosis and secures patient's mobility has been proposed. New orthosis has been designed under the following two premises. First, the knee joint of the orthosis was designed fold in order for the orthosis to move in a walking pattern similar to that of a normal person. Second, the knee joint was designed to extend during the swing phase and lock safely during the stance phase.

  • PDF

Analysis on Rehabilitation of Elbow Joint Using Elastic String (탄성 줄을 이용한 팔꿈치 관절 재활 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.196-201
    • /
    • 2016
  • This paper analyses the characteristics of a stiffness-based rehabilitation mechanism for improving the function of the elbow joint of a human. We consider an elastic string as a tool for the elbow joint rehabilitation, where the string has been modeled as a linear spring with a stiffness. For effective rehabilitation training by using such a mechanism, we need to analyse the available torque characteristics of the elbow joint according to the stiffness of the string. Through various simulations, the torque pattern and its range of the elbow joint by assigning the stiffness of the string have been identified for a pre-defined trajectory of motion of the elbow joint. Finally, we show that the specified stiffness-based rehabilitation scheme can be used for effective rehabilitation of the elbow joint.