• Title/Summary/Keyword: Joint Optimization

Search Result 457, Processing Time 0.026 seconds

RIS Selection and Energy Efficiency Optimization for Irregular Distributed RIS-assisted Communication Systems

  • Xu Fangmin;Fu Jinzhao;Cao HaiYan;Hu ZhiRui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1823-1840
    • /
    • 2023
  • In order to improve spectral efficiency and reduce power consumption for reconfigurable intelligent surface (RIS) assisted wireless communication systems, a joint design considering irregular RIS topology, RIS on-off switch, power allocation and phase adjustment is investigated in this paper. Firstly, a multi-dimensional variable joint optimization problem is established under multiple constraints, such as the minimum data requirement and power constraints, with the goal of maximizing the system energy efficiency. However, the proposed optimization problem is hard to be resolved due to its property of nonlinear nonconvex integer programming. Then, to tackle this issue, the problem is decomposed into four sub-problems: topology design, phase shift adjustment, power allocation and switch selection. In terms of topology design, Tabu search algorithm is introduced to select the components that play the main role. For RIS switch selection, greedy algorithm is used to turn off the RISs that play the secondary role. Finally, an iterative optimization algorithm with high data-rate and low power consumption is proposed. The simulation results show that the performance of the irregular RIS aided system with topology design and RIS selection is better than that of the fixed topology and the fix number of RISs. In addition, the proposed joint optimization algorithm can effectively improve the data rate and energy efficiency by changing the propagation environment.

Design of an 1 DOF Assistive Knee Joint for a Gait Rehabilitation Robot (보행 재활 로봇 개발을 위한 1자유도 무릎 관절 설계)

  • Lee, Sanghyeop;Shin, Sung Yul;Lee, Jun Won;Kim, Changhwan
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.8-19
    • /
    • 2013
  • One of the important issues for structural and electrical specifications in developing a robot is to determine lengths of links and motor specifications, which need to be appropriate to the purpose of robot. These issues become more critical for a gait rehabilitation robot, since a patient wears the robot. Prior to developing an entire gait rehabilitation robot, designing of a 1DOF assistive knee joint of the robot is considered in this paper. Human gait motions were used to determine an allowable range of knee joint that was rotated with a linear type actuator (ball-screw type) and links. The lengths of each link were determined by using an optimization process, minimizing the stroke of actuator and the total energy (kinetic and potential energy). Kinetic analysis was performed in order to determine maximum rotational speed and maximum torque of the motor for tracking gait trajectory properly. The prototype of 1 DOF assistive knee joint was built and examined with a impedance controller.

A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in MEC System

  • Liu, Qinghua;Li, Qingping
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.721-736
    • /
    • 2021
  • For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.

Energy-Aware Hybrid Cooperative Relaying with Asymmetric Traffic

  • Chen, Jian;Lv, Lu;Geng, Wenjin;Kuo, Yonghong
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.717-726
    • /
    • 2015
  • In this paper, we study an asymmetric two-way relaying network where two source nodes intend to exchange information with the help of multiple relay nodes. A hybrid time-division broadcast relaying scheme with joint relay selection (RS) and power allocation (PA) is proposed to realize energy-efficient transmission. Our scheme is based on the asymmetric level of the two source nodes' target signal-to-noise ratio indexes to minimize the total power consumed by the relay nodes. An optimization model with joint RS and PA is studied here to guarantee hybrid relaying transmissions. Next, with the aid of our proposed intelligent optimization algorithm, which combines a genetic algorithm and a simulated annealing algorithm, the formulated optimization model can be effectively solved. Theoretical analyses and numerical results verify that our proposed hybrid relaying scheme can substantially reduce the total power consumption of relays under a traffic asymmetric scenario; meanwhile, the proposed intelligent optimization algorithm can eventually converge to a better solution.

On-demand Allocation of Multiple Mutual-compensating Resources in Wireless Downlinks: a Multi-server Case

  • Han, Han;Xu, Yuhua;Huang, Qinfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.921-940
    • /
    • 2015
  • In this paper, we investigate the multi-resource allocation problem, a unique feature of which is that the multiple resources can compensate each other while achieving the desired system performance. In particular, power and time allocations are jointly optimized with the target of energy efficiency under the resource-limited constraints. Different from previous studies on the power-time tradeoff, we consider a multi-server case where the concurrent serving users are quantitatively restricted. Therefore user selection is investigated accompanying the resource allocation, making the power-time tradeoff occur not only between the users in the same server but also in different servers. The complex multivariate optimization problem can be modeled as a variant of 2-Dimension Bin Packing Problem (V2D-BPP), which is a joint non-linear and integer programming problem. Though we use state decomposition model to transform it into a convex optimization problem, the variables are still coupled. Therefore, we propose an Iterative Dual Optimization (IDO) algorithm to obtain its optimal solution. Simulations show that the joint multi-resource allocation algorithm outperforms two existing non-joint algorithms from the perspective of energy efficiency.

Joint FrFT-FFT basis compressed sensing and adaptive iterative optimization for countering suppressive jamming

  • Zhao, Yang;Shang, Chaoxuan;Han, Zhuangzhi;Yin, Yuanwei;Han, Ning;Xie, Hui
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.316-325
    • /
    • 2019
  • Accurate suppressive jamming is a prominent problem faced by radar equipment. It is difficult to solve signal detection problems for extremely low signal to noise ratios using traditional signal processing methods. In this study, a joint sensing dictionary based compressed sensing and adaptive iterative optimization algorithm is proposed to counter suppressive jamming in information domain. Prior information of the linear frequency modulation (LFM) and suppressive jamming signals are fully used by constructing a joint sensing dictionary. The jamming sensing dictionary is further adaptively optimized to perfectly match actual jamming signals. Finally, through the precise reconstruction of the jamming signal, high detection precision of the original LFM signal is realized. The construction of sensing dictionary adopts the Pei type fast fractional Fourier decomposition method, which serves as an efficient basis for the LFM signal. The proposed adaptive iterative optimization algorithm can solve grid mismatch problems brought on by undetermined signals and quickly achieve higher detection precision. The simulation results clearly show the effectiveness of the method.

Energy Optimization of a Biped Robot for Walking a Staircase Using Genetic Algorithms

  • Jeon, Kweon-Soo;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.215-219
    • /
    • 2003
  • In this paper, we generate a trajectory minimized the energy gait of a biped robot for walking a staircase using genetic algorithms and apply to the computed torque controller for the stable dynamic biped locomotion. In the saggital plane, a 6 degree of freedom biped robot that model consists of seven links is used. In order to minimize the total energy efficiency, the Real-Coded Genetic Algorithm (RCGA) is used. Operators of genetic algorithms are composed of a reproduction, crossover and mutation. In order to approximate the walking gait, the each joint angle is defined as a 4-th order polynomial of which coefficients are chromosomes. Constraints are divided into equality and inequality. Firstly, equality constraints consist of position conditions at the end of stride period and each joint angle and angular velocity condition for periodic walking. On the other hand, inequality constraints include the knee joint conditions, the zero moment point conditions for the x-direction and the tip conditions of swing leg during the period of a stride for walking a staircase.

  • PDF

Control of Redundant Manipulators Using Null-Space Dynamics (여유자유도 로보트 충격제어)

  • Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.63-70
    • /
    • 1995
  • This paper presents an impact control algorithm for reducing the potentially damaging effects by interation of redundant manipulators with their environments. In the proposed control algorithm, the redundancy is resolved at the torque level by locally minimizing joint torque, subject to the operational space dynamic formulation which maps the joint torque set into the operational forces. For a given pre-impact velocity of the manipulator, the proposed approach is on generating joint space trajectories throughout the motion near the contact which instantaneously minimize the impulsive force which is a scalar function of manipulator's configurations. The comparative evaluation of the proposed algorithm with a local torque optimization algorithm with a local torque optimization algorithm without reducing impact is performed by computer simulation. The simulation results illustrate the effectiveness of the algorithm in reducing both the effects of impact and large torque requirements.

  • PDF