• Title/Summary/Keyword: Joint Moments

Search Result 131, Processing Time 0.026 seconds

Characteristics of joint resistance with different kinds of HTS tapes for heater trigger switch

  • Lee, Jeyull;Park, Young Gun;Lee, Woo Seung;Jo, Hyun Chul;Yoon, Yong Soo;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.32-35
    • /
    • 2014
  • Recently, many researches on the system of superconducting power supply and superconducting magnetic energy storage (SMES) using high temperature superconducting (HTS) tapes has been progressed. Those kinds of superconducting devices use the heater trigger switches that have a control delay problem at moments of heating up and cooling down. One way to reduce the time delay is using a different HTS tape at trigger part. For example, HTS tape having lower critical temperature can reduce time delay of heating up and heating down stage for heater trigger operation. This paper deals with resistances joint with different kinds of HTS tapes which have different properties to verify usefulness of the suggested method. Three kinds of commercial HTS tapes with different specifications are selected as samples and two kinds of solders are used for comparison. Joint is performed with temperature and pressure controllable joint machine and the joint characteristics are analyzed under the repeatable conditions.

Functional Difference of the Human Body Movements on Gait with or without Smart phone in Elementary School Students (초등학생 스마트폰 사용 유·무 보행의 신체움직임 기능 차이)

  • Jang, Young Kwan;Shin, Hak Soo;Jang, In Young;Hong, Su Yeon;Kong, Se-Jin;Jeong, Wang Soo;Hah, Chong Ku
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.143-151
    • /
    • 2015
  • The purpose of this study was to investigate temporal and spatial variations, and moments of the lower extremities of gait while playing the game with smartphone under different curb-heights. Ten male elementary school students(from 10 years to 13 years old) participated in this study. Twelve infrared cameras(Oqus-500) and two force plates(9260AA) were used for collecting data and these were processed via Visual 3D software. In conclusion, with or without smartphone and with different curb-heights, the spatial and temporal parameters of walking were not the same and coefficients of variations were not consistent. The maximum joint moments of the lower extremities with or without smartphone were not statistically significant but those of hip and ankle joint were statistically significant with regard to the different heights of the curbs.

Experimental studies on behaviour of bolted ball-cylinder joints under axial force

  • Guo, Xiaonong;Huang, Zewei;Xiong, Zhe;Yang, Shangfei;Peng, Li
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.137-156
    • /
    • 2016
  • Due to excellent advantages such as better illuminative effects, considerable material savings and ease and rapidness of construction, the bolted ball-cylinder joint which is a new type joint system has been proposed in space truss structures. In order to reveal more information and understanding on the behaviour of bolted ball-cylinder joints, full-scale experiments on eight bolted ball-cylinder joint specimens were conducted. Five joint specimens were subjected to axial compressive force, while another three joint specimens were subjected to axial tensile force. The parameters investigated herein were the outside diameter of hollow cylinders, the height of hollow cylinders, the thickness of hollow cylinders, ribbed stiffener and axial force. These joint specimens were collapsed by excessive deformation of hollow cylinders, punching damage of hollow cylinders, evulsion of bolts, and weld cracking. The strain distributions on the hollow cylinder opening were mainly controlled by bending moments. To improve the ultimate bearing capacity and axial stiffness of bolted ball-cylinder joints, two effective measures were developed: (1) the thickness of the hollow cylinder needed to be thicker; (2) the ribbed stiffener should be adopted. In addition, the axial stiffness of bolted ball-cylinder joints exhibited significant non-linear characteristics.

The Scientific Research of Rehabilitation Training Program Participants in Stroke Patients (재활운동에 참가한 뇌졸중환자의 운동과학적 연구)

  • Jin, Young-Wan
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1704-1710
    • /
    • 2010
  • The purpose of this study was to describe the biomechanical characteristics of stroke patients. These characteristics were obtained during walking on a Zebris system, cinematography system and EMG system. Seven female stroke patients participated in this study. The magnitude of the profiles (joint peak angle, joint peak moments, foot pressure COP, EMG data) correlated with rehabilitation training duration using t-test. The significance level selected for this study was p<0.05, t-test. Joint analysis identified significant differences in hip joint peak angle and hip joint peak moment. Foot pressure verified significant differences in gait line length of COP. The EMG signal proved significant differences in rectus femoris and vastus lateralis.

Kinetic Analysis of the Lower Body Joints on Golf Swing (골프 스윙시 하지의 운동역학적 분석)

  • Chang, Jae-Kwan;Ryu, Jae-Kyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.339-347
    • /
    • 2014
  • The purpose of this study was to investigate joint torques of lower body segments on professional golfers. Three dimensional swing analysis was conducted on the seven subjects. Each subject was asked to swing with 45 inches of Callaway driver, where two force plates (9286AA, Kistler, Switzerland) were built, with his normal speed and tempo. The resultant joint moments of the lower extremities were computed using the kinematic variables of the segments, anthropometric measures and the ground reaction force data by inverse dynamics method. Based on the results of this study, the following conclusions were drawn; It was found that the left ankle joint torque at 3rd phase was increased toward extension on the X-axis and abduction on the Y-axis. The left knee joint torque was alternated from flexion to extension direction in order to lower down the body weight at the beginning of the downswing. The lumbar joint torque was alternated from flexion to extension in order to speed up the upper body rotation which could increase the club head speed ultimately.

Improvement of Ammunition Box by Ergonomic Evaluation

  • Lee, Kyung-Sun;Kim, Sung-Hoon;Seo, Song-Won;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Objective: The purpose of this paper is to evaluate old and newly designed ammunition boxes from an ergonomic point of view. Background: The ammunition boxes made of wood, which are currently used by the military, have some difficulties such as corrosion and damage of ammunition, environmental pollution, and stock management. Also, damages to the wooden ammunition boxes take place frequently, because soldiers carry them manually. Method: Sixteen participants volunteered to randomly perform lifting, carrying, and side-by-side moving tasks with 4 different old and new boxes, respectively for the ammunitions of 5.56mm, 60mm, 81mm, and 105mm in diameter. The old boxes are made of wood and are currently used in the military, while the new boxes are made of plastics. The joint moments of the elbow, shoulder, back, and knee were measured by using a motion analysis system and force platforms. In addition, an electromyographic system was used to measure the forces of hand and wrist muscles. Results: In most tasks, new boxes caused less joint moments at the elbow and shoulder than old boxes, because the new boxes were lighter and smaller than the old boxes. New boxes also derived less hand and wrist muscle forces due to the provision of fixed hard handles rather than string handles. Conclusion: The ergonomically designed new boxes could reduce the physical stresses of soldiers manually handling ammunitions and be helpful for storage and reuse. Application: This study shows an ergonomic application example for product development and evaluation.

Large-Eddy Simulation based Eulerian PDF Approach for the Simulation of Scramjet Combustors (대와류모사 기법과 확률밀도함수를 이용한 스크램제트 연소부에서의 연소 현상 연구)

  • Koo, Heeseok
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.355-357
    • /
    • 2012
  • A probability density function (PDF) approach to account for turbulence-chemistry interaction in the context of large eddy simulation (LES) based simulation of scramjets is developed. To solve the high-dimensional joint-composition PDF transport equation robustly, the semi-discrete quadrature method of moments (SeQMOM) is recently proposed [1]. The SeQMOM approach addresses key numerical issues in LES related to the inaccuracies in computing filter-scale gradients, enabling an efficient and numerically consistent solution of the PDF transport equation. The computational tool is used to simulate a cavity-stabilized Mach 2.2 supersonic combustor.

  • PDF

Effect of Foot Eversion on Knee and Ankle of Trans-tibial Amputees (인공의족의 외반 특성이 하퇴절단자의 무릎과 발목에 미치는 영향)

  • Bae, Tae-Soo;Chang, Yun-Hee;Kim, Shin-Ki;Mun, Mu-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1505-1508
    • /
    • 2008
  • One of the important functions of prosthetic foot is the foot inversion-eversion which is so important when walking on uneven surfaces. The aim of our study was to evaluate the effect of foot eversion angle especially on knee and ankle joint for transtibial amputees by motion analysis. The experimental data were collected from three transtibial amputees and then ten healthy individuals. To simulate walking on side sloping ground, we used custom-made slope (5, 10, 15 degrees). Motion analysis was performed by 3-dimensional motion analyzer for 6 dynamic prosthetic feet. The results showed that knee abduction moments of amputated leg were decreased but those of sound leg were mainly increased as foot eversion angle increased. And ankle abduction moments of sound leg were inconsistent in magnitude and tendency between control and experimental group. Therefore foot eversioncharacteristics should be considered to develop advanced prosthetic foot.

  • PDF

Motion classification using distributional features of 3D skeleton data

  • Woohyun Kim;Daeun Kim;Kyoung Shin Park;Sungim Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.551-560
    • /
    • 2023
  • Recently, there has been significant research into the recognition of human activities using three-dimensional sequential skeleton data captured by the Kinect depth sensor. Many of these studies employ deep learning models. This study introduces a novel feature selection method for this data and analyzes it using machine learning models. Due to the high-dimensional nature of the original Kinect data, effective feature extraction methods are required to address the classification challenge. In this research, we propose using the first four moments as predictors to represent the distribution of joint sequences and evaluate their effectiveness using two datasets: The exergame dataset, consisting of three activities, and the MSR daily activity dataset, composed of ten activities. The results show that the accuracy of our approach outperforms existing methods on average across different classifiers.

Analysis on lower extremity joint moment during a developpe devant (Developpe devant 수행시 하지 관절 모멘트 분석)

  • Park, Ki-Sa;Shin, Sung-Hu;Kwon, Moon-Seok;Kim, Tae-Hwan;Lee, Hung-Na
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.133-144
    • /
    • 2004
  • The purpose of this study was to analyze the joint moment on lower extremity during a developpe devant. Data were collected by Kwon3D, KwonGRF program. Two professional modem female dancers were participated in this experiment. Subjects performed a developpe devant in meddle heights. On the axes of X, Y, Z, it was shown that the maximum joint moment was occurred in hip joint. The moments are plotted during developpe devant. The ankle muscles generate a plantar flexion moment and the knee muscles generate a flexion moment and The hip muscles generate a extension moment. So these muscles of joint muscles were known to play a key role in keeping the body balance while doing developpe devant. In addition adduction moment occurred at hip, knee, an ankle in the order of amount, we could assume from this data that him out motion started from the hip joint. There was small active turn out possible below the hip joint. A small amount of extra turn out could be obtained when standing because of flexion between the foot and floor, which could be used to give a passive external rotation force to the whole leg and this could produce a rotation between the knee and foot. This passive external rotation could produce very damaging results. Therefore, lower extremity joint muscles such as hip, knee, and ankle muscle should be trained to keep the body balance and prevent injury during developpe devant performance. And for the safe and perfect turn ort performance, hip joint abduction, the most important external rotating muscle for him out is needed to train and full stretching should be done in advance.