• 제목/요약/키워드: Joint Mechanism

검색결과 756건 처리시간 0.024초

Study on mechanical behaviors of column foot joint in traditional timber structure

  • Wang, Juan;He, Jun-Xiao;Yang, Qing-Shan;Yang, Na
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.1-14
    • /
    • 2018
  • Column is usually floating on the stone base directly with or without positioning tenon in traditional Chinese timber structure. Vertical load originated by the heavy upper structure would induce large friction force and compression force between interfaces of column foot and stone base. This study focused on the mechanical behaviors of column foot joint with consideration of the influence of vertical load. Mechanism of column rocking and stress state of column foot has been explored by theoretical analysis. A nonlinear finite element model of column foot joint has been built and verified using the full-scale test. The verified model is then used to investigate the mechanical behaviors of the joint subjected to cyclic loading with different static vertical loads. Column rocking mechanism and stress distributions of column foot were studied in detail, showing good agreement with the theoretical analysis. Mechanical behaviors of column foot joint and the effects of the vertical load on the seismic behavior of column foot were studied. Result showed that compression stress, restoring moment and stiffness increased with the increase of vertical load. An appropriate vertical load originated by the heavy upper structure would produce certain restoring moment and reset the rocking columns, ensuring the stability of the whole frame.

Shear strength analyses of internal diaphragm connections to CFT columns

  • Kang, Liping;Leon, Roberto T.;Lu, Xilin
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1083-1101
    • /
    • 2015
  • Previous theoretical equations for the shear capacity of steel beam to concrete filled steel tube (CFT) column connections vary in the assumptions for the shear deformation mechanisms and adopt different equations for calculating shear strength of each component (steel tube webs, steel tube flanges, diaphragms, and concrete etc.); thus result in different equations for calculating shear strength of the joint. Besides, shear force-deformation relations of the joint, needed for estimating building drift, are not well developed at the present. This paper compares previously proposed equations for joint shear capacity, discusses the shear deformation mechanism of the joint, and suggests recommendations for obtaining more accurate predictions. Finite element analyses of internal diaphragm connections to CFT columns were carried out in ABAQUS. ABAQUS results and theoretical estimations of the shear capacities were then used to calibrate rotational springs in joint elements in OpenSEES simulating the shear deformation behavior of the joint. The ABAQUS and OpenSEES results were validated with experimental results available. Results show that: (1) shear deformation of the steel tube dominates the deformation of the joint; while the thickness of the diaphragms has a negligible effect; (2) in OpenSEES simulation, the joint behavior is highly dependent on the yielding strength given to the rotational spring; and (3) axial force ratio has a significant effect on the joint deformation of the specimen analyzed. Finally, modified joint shear force-deformation relations are proposed based on previous theory.

Interaction of internal forces of interior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Jiangli
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.427-443
    • /
    • 2014
  • This paper presents detailed analysis of the internal forces of interior beam-column joints of reinforced concrete (RC) frames under seismic action, identifies critical joint sections, proposes consistent definitions of average joint shear stress and average joint shear strain, derives formulas for calculating average joint shear and joint torque, and reports simplified analysis of the effects of joint shear and torque on the flexural strengths of critical joint sections. Numerical results of internal joint forces and flexural strengths of critical joint sections are presented for a pair of concentric and eccentric interior connections extracted from a seismically designed RC frame. The results indicate that effects of joint shear and torque may reduce the column-to-beam flexural strength ratios to below unity and lead to "joint-yielding mechanism" for seismically designed interior connections. The information presented in this paper aims to provide some new insight into the seismic behavior of interior beam-column joints and form a preliminary basis for analyzing the complicated interaction of internal joint forces.

Joint Crediting Mechanism under the Paris Agreement and Its Implication to the Climate Policy in Korea

  • Jung, Tae Yong;Sohn, Jihyun
    • 한국기후변화학회지
    • /
    • 제7권4호
    • /
    • pp.373-381
    • /
    • 2016
  • Before the Conference of Parties (COP) 21 of the United Nations Framework Convention on Climate Change (UNFCCC) in 2015, most parties of UNFCCC had submitted their intended nationally determined contributions (INDCs) and to achieve their voluntary targets, some parties consider using international market mechanisms. As one of such mechanisms, Japan promoted its own bilateral mechanism called Joint Crediting Mechanism (JCM). In this study, feasibility studies and projects under JCM have been analyzed by project type, sector, country and region, which could provide some implications in designing Korea's future climate policy to achieve Korea's targets of 11.7% using international market mechanism in INDC. Since 2010, JCM has promoted 542 projects and feasibility studies in 44 countries according to the Institute for Global Environmental Strategies (IGES) database. Among 542 projects, about 80% were feasibility studies implying that JCM was more focused on project identification. However, current trends of JCM show that more projects will be soon implemented based on these feasibility studies. For sectoral categorization, projects were categorized into seven sectors-energy technology, energy efficiency, renewable energy, waste management, city, strategic planning and projects related to the country's efforts to reduce emissions from deforestation and forest degradation (REDD+). JCM projects were mitigation focused with more than 70% of projects were related to energy efficiency, renewable energy and energy technology. At the regional and country level, JCM is highly focused on Asia and especially, more than 100 projects were developed in Indonesia. Based on the analysis of JCM, in order to develop bilateral international mechanism for Korea, it is worthwhile to emphasize that Korea considers Asian countries as her partner. In addition, Korea may consider the collaboration with Multilateral Development Banks (MDBs) to implement projects identified by Korea and Asian partner countries. Furthermore, strategically, it is recommendable to develop jointly with Japan who has already capacity and networks with other Asian countries to mitigate GHG emissions. Such financial resources from MDBs and Japan may contribute to meet the 11.3% of GHG reduction target from abroad according to INDC of Korea.

반복-수평력을 받는 프리캐스트기둥- RC기초 Anchor 접합부의 내력 실험 연구 (Strength Experimental Study on Precast Column-R.C. Foundation Anchor Joint Subjected to Cyclic Horizontal Loading)

  • 이호;정환목;차병기;변상민
    • 한국공간구조학회논문집
    • /
    • 제9권2호
    • /
    • pp.45-52
    • /
    • 2009
  • 이 논문은 반복-수평력을 받는 프리캐스트 기둥-RC 기초 Anchor 접합부의 반복-수평력에 대한 내력 특성을 규명하기 위함이다. 본 연구는 하부 기초에 프리캐스트 콘크리트 기둥과 기초를 Anchor식으로 접합한 콘크리트 구조체가 정확한 응력전달 경로 및 파괴 메커니즘에 있어서 기존의 콘크리트-강재 연결부와 어떠한 차이가 있는지 제시한다. 반복-수평력 작용하의 철근의 인발력 실험결과는 프리캐스트 기둥-RC 기초 Anchor 시공에 필요한 철근의 최소 필요 삽입 깊이를 제시한다. 또한, 실험을 통해 제시된 응력 전달 경로 및 파괴 메커니즘을 제품별 메뉴얼에 제시되어 있는 메커니즘과 비교, 검토함으로서 접합부의 명확한 응력전달 경로 및 파괴 메커니즘을 시공자의 요구 성능에 맞게 제시한다. 그러므로 본 연구를 통해 프리캐스트 콘크리트 기둥의 정확한 주근의 개수, 공칭직경, 정착 길이 등에 대한 최적의 설계 조건을 제시함으로써, 시공 시 이들에 대한 정확한 데이터를 제공한다.

  • PDF

Joint Shear Behavior Prediction for RC Beam-Column Connections

  • LaFave, James M.;Kim, Jae-Hong
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.57-64
    • /
    • 2011
  • An extensive database has been constructed of reinforced concrete (RC) beam-column connection tests subjected to cyclic lateral loading. All cases within the database experienced joint shear failure, either in conjunction with or without yielding of longitudinal beam reinforcement. Using the experimental database, envelope curves of joint shear stress vs. joint shear strain behavior have been created by connecting key points such as cracking, yielding, and peak loading. Various prediction approaches for RC joint shear behavior are discussed using the constructed experimental database. RC joint shear strength and deformation models are first presented using the database in conjunction with a Bayesian parameter estimation method, and then a complete model applicable to the full range of RC joint shear behavior is suggested. An RC joint shear prediction model following a U.S. standard is next summarized and evaluated. Finally, a particular joint shear prediction model using basic joint shear resistance mechanisms is described and for the first time critically assessed.

Mechanism and Behavior Characteristic of Space Truss Unit for Post-tensioning

  • Kim, Jin-Woo;Kim, Sang-Jin
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제6권1호
    • /
    • pp.38-43
    • /
    • 2003
  • This paper presents the results of a post-tensioning test and analysis of a pyramidal unit structure that is basic element for space structures. The behavior characteristics was analyzed and compared with the numerical analysis and the mechanism in test model was confirmed with geometrical analysis. The results of this paper show that the behaviors of space structures can be predicted in multi-directional Mero joint system. And the authors suggest the possibility of erection and shaping formation with comparatively small post-tensioning, and space structure with the mechanism should consider the nonlinear behavior due to large deformation.

  • PDF

운동의 허용공차를 이용한 RSSS-SC 현장장치의 기구학적 설계 (Kinematic Synthesis and Analysis of RSS-SC Suspension System Using Acceptable Tolerances of Motion)

  • 김선평;심재경
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2672-2679
    • /
    • 2000
  • In synthesizing and RSSS-SC mechanism that is the kinematic model of the McPherson strut suspension system in automobiles, the design equations for R-S, S-S and S-C dyads should be solved separately for a given set of prescribed positions. The number of prescribed positions that the RSSS-SC mechanism can be synthesized is up to three because of the S-C dyad. This limitation may cause unsatisfactory results in synthesized joint positions. This paper presents a kinematic synthesis method to place the joints of an RSSS-SC mechanism in desired boundaries by varying the prescribed positions of the mechanism within acceptable tolerances. The sensitivity analysis of the joint positions is used determine which displacement parameter should be altered to fulfill this task.