• Title/Summary/Keyword: Joint Loading

Search Result 766, Processing Time 0.029 seconds

Interaction between opening space in concrete slab and non-persistent joint under uniaxial compression using experimental test and numerical simulation

  • Vahab Sarfarazi;Kaveh Asgari;Mehdi Kargozari;Pouyan Ebneabbasi
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.207-221
    • /
    • 2023
  • In this investigation, the interaction between opening space and neighboring joint has been examined by experimental test and Particle flow code in two dimension (PFC2D) simulation. Since, firs of all PFC was calibrated using Brazilian experimental test and uniaxial compression test. Secondly, diverse configurations of opening and neighboring joint were provided and tested by uniaxial test. 12 rectangular sample with dimension of 10 cm*10 cm was prepared from gypsum mixture. One quarter of tunnel and one and or two joint were drilled into the sample. Tunnel diameter was 5.5 cm. The angularities of joint in physical test were 0°, 45° and 90°. The angularities of joint in numerical simulation were 0°, 30°, 60°, -30°, -45°, -60° and its length were 2cm and 4cm. Loading rate was 0.016 m/s. Tensile strength of material was 4.5 MPa. Results shows that dominant type of crack which took place in the model was tensile cracks and or several shear bands develop within the model. The Final stress is minimum in the cases where oriented angle is negative. The failure stress decrease by decreasing the joint angle from 30° to 60°. In addition, the failure stress decrease by incrementing the joint angle from -30° to -60°. The failure stress was incremented by decreasing the number of notches. The failure stress was incremented by decreasing the joint length. The failure stress was incremented by decreasing the number of notches. Comparing experimental results and numerical one, showed that the failure stress is approximately identical in both conditions.

Shear Strength of Grout Type Transverse Joint

  • Kim, Yoon-Chil;Park, Jong-Jin
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • This is the first of two part series on experimental studies of grout type transverse joints. In this study, grout type transverse joints between precast concrete slabs are statically tested to determine the cracking loads and ultimate shear capacities of the grout type transverse joints. The tests are performed with a loading equipment designed and constructed especially in the lab to induce shear failures on the joints of the test specimens. Shape of the transverse joints, grouting materials and amount of prestress are selected as test parameters for the study. The results indicate that epoxy is an excellent grouting material which can be used in limited locations where large tensile stress is acting on the slab. Longitudinal prestressing is also an effective method to increase the shear strength of the transverse joints. A rational method to estimate the cracking and ultimate loads for the design of grout type transverse joints is proposed based on the static loading tests. Success of the tests with shear loading equipment allowed continuing the research further onto the fatigue strength of the grout type joints, which will be presented in the second part of the paper.

  • PDF

An Experimental Study on the Safety of Temporary short pipe Scaffolding (가설 단관 비계의 안전성에 대한 실험적 연구)

  • 채원규
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.85-91
    • /
    • 1994
  • In this thesis, the fracture tests and structural analysis were performed on a series of temporary scaffolding to investigate the variation of strength and the safety of temporary scaffolding. The specimens were of height 270cm and width 50cm and their span was 120cm. The joint loading and member loading were used in the tests, respectively. In these tests, the fracture mode of temporary scaffolding, relationships between the loading and the flexural strain of the specimens were observed. According to the comparison between the test results and the structural analysis results, the effects of the vertical loads and horizontal loads on temporary scaffolding and the safety of temporary scaffolding were studied.

  • PDF

Finite element analysis of a piled footing under horizontal loading

  • Amar Bouzid, Dj.
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.29-43
    • /
    • 2011
  • In this paper a semi-analytical approach is proposed to study the lateral behavior of a piled footing under horizontal loading. As accurate computation of stresses is usually needed at the interface separating the footing (pile) and the soil, this important location should be appropriately modeled as zero-thickness joint element. The piled footing is embedded in elastic soil with either homogeneous modulus or modulus proportional to depth (Gibson's soil). As the pile is the principal element in the piled footing system, a limited parametric study is carried out in order to investigate the influence of footing dimensions and the interface conditions on the lateral behavior of the pile. Hence, the pile behavior is examined through its main governing parameters, namely, the lateral displacement profiles, the bending moments, the shear forces and the soil reactions. The numerical results are presented for Poisson's ratio of 0.2 to represent a large variety of sands and Poisson's ratio of 0.5 to represent undrained clays.

Design and Analysis of Loading Block of VCR Deck Mechanism (비데오 데크 메카니즘의 로딩블럭 해석 및 설계)

  • 박태원;김광배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.502-511
    • /
    • 1994
  • A video deck mechanism is composed of various cams, links, and gears, and it requires precise movement. So kinematic motion between parts should be considered to get desired movement depending on the timing chart which defines movement of each part to get desired mode. Also dynamic effects should be considered to get right tape tension and to estimate motor force required to obtain accurate motion. The design process of the deck mechanism of VCR is explained briefly. The loading block of the deck mechanism is divided into a tape translational group and a brake control group. Each group is modeled for kinematic and dynamic analysis. Finally, two groups are combined together to analyze the loading block of the deck mechanism. Results are used to understand and modify an existing design.

Fatigue performance assessment of welded joints using the infrared thermography

  • Fan, J.L.;Guo, X.L.;Wu, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.417-429
    • /
    • 2012
  • Taking the superficial temperature increment as the major fatigue damage indicator, the infrared thermography was used to predict fatigue parameters (fatigue strength and S-N curve) of welded joints subjected to fatigue loading with a high mean stress, showing good predictions. The fatigue damage status, related to safety evaluation, was tightly correlated with the temperature field evolution of the hot-spot zone on the specimen surface. An energetic damage model, based on the energy accumulation, was developed to evaluate the residual fatigue life of the welded specimens undergoing cyclic loading, and a good agreement was presented. It is concluded that the infrared thermography can not only well predict the fatigue behavior of welded joints, but also can play an important role in health detection of structures subjected to mechanical loading.

Evaluation of Stress Distribution and Corrosion Fatigue Strength on Spot Welded Lap Joint of Coated Thin Steel Plate (표면처리 박강판 spot용접 이음재의 응력분포와 부식피로강도 평가)

  • 배동호;임동진
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.36-45
    • /
    • 1996
  • Fatigue strength of the spot welded lap joint is considerably influenced by corrosive environments. Particularly, the chloride and the sulfide are most injurious to strength of the spot welded lap joint. Therefore, there is a need to evaluate its effect to corrosion fatigue strength for safe life design of spot welded structures. In order to evaluate their corrosion fatigue strength, corrosion fatigue tests on the spot welded lap joints of the uncoated and the coated high strength steel sheets were conducted in air and in 10% NaCl solution. Corrosion fatigue strength of the uncoated specimens were entirely lower than the coated one in NaCl solution, but those of the coated specimens in NaCl solution were lower than in air. And stress distribution in single spon welded lap joint subjected to tension-shear load was investigated by the finite element method. Using these results, we tried to evaluate corrosion fatgue strength of the various spot welded lap joints with maximum stress $\sigma_{max}$ at edge on loading side of the spot welded lap joint. We could find that corrosion fatigue strength could be quantitatively and systematically rearranged by $\sigma_{max}$.

  • PDF

Fatigue Design of Various Type Spot Welded Lap Joints Using the Maximum Stress

  • Jung, Wonseok;Bae, Dongho;Sohn, Ilseon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Recently, a new issue in designing spot welded structures such as automobile and train car bodies is to predict an economical fatigue design criterion. One of the most typical and traditional methods is to use a ΔP-N$\sub$f/ curve. However, since the fatigue data on the ΔP-N$\sub$f/ curve vary according to the welding conditions, materials, geometry of joint and fatigue loading conditions, it is necessary to perform the additional fatigue tests for determining a new fatigue design criterion of spot-welded lap joint having specific dimension and geometry. In this study, the stress distributions around spot welds of various spot welded lap joints such as in-plane bending type (IB type), tension shea. type (TS type) and cross tension type (CT type) were numerically analyzed. Using these results, the ΔP-N$\sub$f/ curves Previously obtained from the fatigue tests for each type were rearranged into the Δ$\sigma$-N$\sub$f/ relations with the maximum stresses at the nugget edge of the spot weld.

Experimental Analysis on Yield Strength of Pipe Connectors and Joints for Pipe Framed Greenhouses (파이프 골조 온실의 조립 연결구 내력 시험)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.113-119
    • /
    • 2001
  • Experiments on the yield strength of pipe connectors made of metal wire, joint pins, pole pipes, multi span insertion joints, and T-clamp joints used in pipe houses were conducted. The strength of connections of a pipe connector made of metal wire was adequate but it had a big difference according to loading direction. Therefore as it is installed, its direction should be taken into consideration. The collapse load of pipes connected with a joint pin was lower than that of single pipes. In the part of frame member at which the great bending moment occurs, the use of joint pin should be avoided. Also experimental results showed that pole pipes for use in a part of frame buried under the ground were safe, and the strength of multi span insertion joints should be increased. The resistant moment of T-clamp was about 13.7% of a single pipe. In case that the external forces acting on left and right rafter are different. a unsymmetrical rotational force is produced at the multi span joint. If it is expected that the actual bending moment on the multi span joint is larger than resistant moment of T-clamp, a reinforcement to safely resist the rotational force is required.

  • PDF

Development and Seismic Performance of Vertical Joints in Precast Concrete Shear Walls under Cyclic Loads (반복하중을 받는 PC 전단벽체에서 수직접합부의 개발 및 내진성능평가)

  • Kim, Ook Jong;Oh, Jae Keun;Kang, Su Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.140-148
    • /
    • 2012
  • Recently there are many attempts to introduce PC construction method in buildings. But the study on PC structural wall has been made progress so slowly because it is very difficult to develop new items. In this study, we have developed new vertical joint on PC wall in order to upgrade constructivity and structural performance of the existing connections, then we have evaluated the seismic resistance performance. As a result of the cyclic loading tests for two specimens, proposed vertical joint on PC wall has shown that it behave the excellent structural performance in comparison to PC wall having no joint. Therefore, we think that proposed vertical joint is the system to apply buliding structure.