• Title/Summary/Keyword: Joint Loading

Search Result 764, Processing Time 0.028 seconds

Effect of geometrical configuration on seismic behavior of GFRP-RC beam-column joints

  • Ghomia, Shervin K.;El-Salakawy, Ehab
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.313-326
    • /
    • 2020
  • Glass fiber-reinforced polymer (GFRP) bars have been introduced as an effective alternative for the conventional steel reinforcement in concrete structures to mitigate the costly consequences of steel corrosion. However, despite the superior performance of these composite materials in terms of corrosion, the effect of replacing steel reinforcement with GFRP on the seismic performance of concrete structures is not fully covered yet. To address some of the key parameters in the seismic behavior of GFRP-reinforced concrete (RC) structures, two full-scale beam-column joints reinforced with GFRP bars and stirrups were constructed and tested under two phases of loading, each simulating a severe ground motion. The objective was to investigate the effect of damage due to earthquakes on the service and ultimate behavior of GFRP-RC moment-resisting frames. The main parameters under investigation were geometrical configuration (interior or exterior beam-column joint) and joint shear stress. The performance of the specimens was measured in terms of lateral load-drift response, energy dissipation, mode of failure and stress distribution. Moreover, the effect of concrete damage due to earthquake loading on the performance of beam-column joints under service loading was investigated and a modified damage index was proposed to quantify the magnitude of damage in GFRP-RC beam-column joints under dynamic loading. Test results indicated that the geometrical configuration significantly affects the level of concrete damage and energy dissipation. Moreover, the level of residual damage in GFRP-RC beam-column joints after undergoing lateral displacements was related to reinforcement ratio of the main beams.

Performance Analysis of Maximum Likelihood Joint Detection for MIMO MC-CDMA Systems (순방향 다중 안테나 MC-CDMA 시스템에서 Maximum Likelihood 합동 검파 성능 분석)

  • Kim, Young-Ju;Song, Hyoung-Joon;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.11
    • /
    • pp.1-8
    • /
    • 2008
  • In this paper, we analyze the symbol error rate (SER) performance of maximum likelihood (ML) joint detection in downlink multiple-input multiple-output (MIMO) multicarrier code division multiple access (MC-CDMA) systems by deriving a tight union bound on the symbol error rate (SER). The union bound for ML joint detection is utilized to demonstrate the performance of MIMO MC-CDMA systems quantitatively in multiuser and frequency selective Rayleigh fading environments. An analysis of the diversity order of the systems shows the effects of multiple users, spread subcarriers, and multiple antennas on the ML joint detection performance. Furthermore, the analysis shows that MIMO MC-CDMA systems without full loading can achieve more diversify than MIMO orthogonal frequency division multiplexing (OFDM) systems.

Optimization of long span portal frames using spatially distributed surrogates

  • Zhang, Zhifang;Pan, Jingwen;Fu, Jiyang;Singh, Hemant Kumar;Pi, Yong-Lin;Wu, Jiurong;Rao, Rui
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.227-237
    • /
    • 2017
  • This paper presents optimization of a long-span portal steel frame under dynamic wind loads using a surrogate-assisted evolutionary algorithm. Long-span portal steel frames are often used in low-rise industrial and commercial buildings. The structure needs be able to resist the wind loads, and at the same time it should be as light as possible in order to be cost-effective. In this work, numerical model of a portal steel frame is constructed using structural analysis program (SAP2000), with the web-heights at five locations of I-sections of the columns and rafters as the decision variables. In order to evaluate the performance of a given design under dynamic wind loading, the equivalent static wind load (ESWL) is obtained from a database of wind pressures measured in wind tunnel tests. A modified formulation of the problem compared to the one available in the literature is also presented, considering additional design constraints for practicality. Evolutionary algorithms (EA) are often used to solve such non-linear, black-box problems, but when each design evaluation is computationally expensive (e.g., in this case a SAP2000 simulation), the time taken for optimization using EAs becomes untenable. To overcome this challenge, we employ a surrogate-assisted evolutionary algorithm (SAEA) to expedite the convergence towards the optimum design. The presented SAEA uses multiple spatially distributed surrogate models to approximate the simulations more accurately in lieu of commonly used single global surrogate models. Through rigorous numerical experiments, improvements in results and time savings obtained using SAEA over EA are demonstrated.

Radiologic Evaluation of Change of Ankle Joint after Total Knee Arthroplasty (인공 슬관절 치환술 후 족관절 변화에 대한 방사선학적 연구)

  • Bae, Su-Young;Kim, Hee-Chun;Park, Young-Soo;Lee, Sang-Eun;Lee, Don-Seok
    • Journal of Korean Foot and Ankle Society
    • /
    • v.11 no.2
    • /
    • pp.135-140
    • /
    • 2007
  • Purpose: To evaluate the incidence and describe radiologic pattern of ankle arthritis following change of mechanical loading axis by total knee arthroplasty. Materials and Methods: We reviewed radiographs of 419 cases, 243 patients underwent total knee arthroplasy from January 2002 to October 2006 retrospectively. We described radiologic parameters around the ankle joint and measured the amount of change of knee varus or valgus angle by comparing preoperative and postoperative anteroposterior standing lower extremities AP X-rays. We divided cases into two groups, one with radiologically arthritic change of the ankle joint and the other one without any radiologic change after surgery. We compared two groups in each parameters and analyzed statistically (SPSS v13.0). Results: Three hundred eighty one cases were divided into varus group and 38 cases in valgus group. 125 cases were divided into ankle arthritic change-positive subgroup among the varus group and 251 cases were in negative subgroup. The amount of varus angle correction by total knee arthroplasty showed significant difference between two subgroups. There was no significant difference in each parameters between subgroups within 38 valgus cases. Conclusion: Ankle arthritis can be aggravated after total knee arthroplasty because of the change of mechanical loading axis onto the ankle joint. Therefore it may be needed to evaluate symptoms and function of ankle joints before performing total knee arthroplasties especially in patients with huge varus deformities of knee joints.

  • PDF

Evaluation of Structural Performance the Hollow PC Column Joint Subjected to Cyclic Lateral Load (반복 횡하중을 받는 유공 PC 기둥 접합부의 구조성능 평가)

  • Seo, Soo-Yeon;Yoon, Seong-Joe;Lee, Woo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.335-343
    • /
    • 2008
  • In order to improve the workability in erecting Precast Concrete (PC) members and enhance the seismic resistance capacity of the joints in PC moment frames, a new PC column and its construction process are introduced in this paper. This column is manufactured by centrifugal force in keeping the hollow tube inside; the hollow is little bit wide and the grout can be poured from top to bottom after erection at site so that more compact grouting is possible in horizontal joint. The repeated cyclic loading test for four full scaled specimens was conducted to evaluate the seismic resistance capacity of the joint designed by the proposed system. For the continuity of main reinforcements in column, two connecting methods are used in designing specimens; one is to use mechanical connector and other is lab splice. From the cyclic lateral loading test, it was found that the seismic capacity of the developed PC column joint is comparable to that of monolithic joint.

Finite element development of a Beam-column connection with CFRP sheets subjected to monotonic and cyclic loading

  • Rahimipour, Arash;Hejazi, Farzad;Vaghei, Ramin;Jaafar, Mohd Saleh
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1083-1096
    • /
    • 2016
  • Beam-column joints are recognized as the weak points of reinforcement concrete frames. The ductility of reinforced concrete (RC) frames during severe earthquakes can be measured through the dissipation of large energy in beam-column joint. Retrofitting and rehabilitating structures through proper methods, such as carbon fiber reinforced polymer (CFRP), are required to prevent casualties that result from the collapse of earthquake-damaged structures. The main challenge of this issue is identifying the effect of CFRP on the occurrence of failure in the joint of a cross section with normal ductility. The present study evaluates the retrofitting method for a normal ductile beam-column joint using CFRP under monotonic and cyclic loads. Thus, the finite element model of a cross section with normal ductility and made of RC is developed, and CFRP is used to retrofit the joints. This study considers three beam-column joints: one with partial CFRP wrapping, one with full CFRP wrapping, and one with normal ductility. The two cases with partial and full CFRP wrapping in the beam-column joints are used to determine the effect of retrofitting with CFRP wrapping sheets on the behavior of the beam-column joint confined by such sheets. All the models are subjected to monotonic and cyclic loading. The final capacity and hysteretic results of the dynamic analysis are investigated. A comparison of the dissipation energy graphs of the three connections shows significant enhancement in the models with partial and full CFRP wrapping. An analysis of the load-displacement curves indicates that the stiffness of the specimens is enhanced by CFRP sheets. However, the models with both partial and full CFRP wrapping exhibited no considerable improvement in terms of energy dissipation and stiffness.

An Efficient Method for Co-purification of Eggshell Matrix Proteins OC-17, OC-116, and OCX-36

  • Zhang, Maojie;Wang, Ning;Xu, Qi;Harlina, Putri Widyanti;Ma, Meihu
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.769-778
    • /
    • 2016
  • In this study, we improved the eggshell-membrane separation process by separating the shell and membrane with EDTA solution, evaluating effects of three different extraction solutions (acetic acid, EDTA, and phosphate solution), and co-purifying multiple eggshell proteins with two successive ion-exchange chromatography procedures (CM Sepharose Fast Flow and DEAE Sepharose Fast Flow). The recovery and residual rates of eggshell and membrane separated by the modified method with added EDTA solution were 93.88%, 91.15% and 1.01%, 2.87%, respectively. Ovocleidin-116 (OC-116) and ovocalyxin-36 (OCX-36) were obtained by loading 50 mM Na-Hepes, pH 7.5, 2 mM DTT and 350 mM NaCl buffer onto the DEAE-FF column at a flow rate of 1 mL/min, ovocleidin-17 (OC-17) was obtained by loading 100 mM NaCl, 50 mM Tris, pH 8.0 on the CM-FF column at a flow rate of 0.5 mL/min. The purities of OCX-36, OC-17 and OC-116 were 96.82%, 80.15% and 73.22%, and the recovery rates were 55.27%, 53.38% and 36.34%, respectively. Antibacterial activity test suggested that phosphate solution extract exhibited significantly higher activity against the tested bacterial strains than the acetic acid or EDTA extract, probably due to more types of proteins in the extract. These results demonstrate that this separation method is feasible and efficient.

A Study on Joint Position at Concrete Pavement with Box Culverts (박스 암거가 통과하는 콘크리트 포장의 줄눈 위치에 관한 연구)

  • Park, Joo-Young;Sohn, Dueck-Su;Lee, Jae-Hoon;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.45-53
    • /
    • 2012
  • Hollows are easily made and bearing capacity is lowered near underground structures of concrete pavement because of poor compaction and long term settlement of the ground. Distresses occur and lifespan is shortened because of larger stress induced by external loadings expected than that in the design. In this paper, the distresses of the concrete pavement slab over box culverts were investigated at the Korea Expressway Corporation(KEC) test road. The transverse cracking of the slabs over the culverts was compared between up and down lines with different soil cover depth. The box culvert without soil cover and concrete pavement were modeled and analyzed by the finite element method(FEM) to verify the transverse cracking at the test road. Wheel loading was applied after self weight of the pavement and temperature gradient of the concrete slab at Yeojoo, Gyeonggi where the test road is located were considered. Positions of maximum tensile stress and corresponding positions of the wheel loading were found for each loading combination. Joint position minimizing the maximum tensile stress was found and optimal slab length over the culverts with diverse size were suggested.

Cyclic Loading Test and an Analytical Evaluation of the Modular System with Bracket-typed Fully Restrained Moment Connections (브래킷형 완전강접합 모듈러 시스템의 반복가력실험과 해석적 평가)

  • Park, Jae-Seong;Kang, Chang-Hoon;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.19-28
    • /
    • 2018
  • Key factors that ensure competitiveness of modular unit include consistent high quality and connection condition that ensures high structural performance while minimizing the overall scale of the on-site process. However, it is difficult to evaluate the structural performance of the connection of modular unit, and its structural analysis and design method can be different depending on the connection to its development, which affects the seismic performance of its final design. In particular, securing the seismic performance is the key to designing modular systems of mid-to-high-rise structure. In this paper, therefore, the seismic performance of the modular system with bracket-typed fully restrained moment connections according to stiffness and the shapes of various connection members was evaluated through experimental and analytical methods. To verify the seismic performance, a cyclic loading test of the connection joint of the proposed modular system was conducted. As a result of this study, theoretical values and experimental results were compared with the initial stiffness, hysteresis behavior and maximum bending moment of the modular system. Also, the connection joint was modeled, using the commercial program ANSYS, which was then followed by finite element analysis of the system. According to the results of the experiment, the maximum resisting force of the proposed connection exceeded the theoretical parameters, which indicated that a rigid joint structural performance could be secured. These results almost satisfied the criteria for connection bending strength of special moment frame listed on KBC2016.

Predicted the behavior of the femur according to the loading condition using FEM (유한요소해석을 이용한 하중조건에 따른 대퇴골의 거동예측)

  • Song, Seung-Youp;Choi, Seong Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.3-9
    • /
    • 2013
  • Falling related injuries are categorized as the most serious and common medical problems experienced by the elderly. Hip joint fracture, one of the most serious consequences of falling in the elderly, occurs in only about 1% of falling. In this study, according to the loading conditions, the analysis is the behavior of the femur. The CT images using the commercial program "Mimics" the bones of three-dimensional CAD data generated, and we will analyze the results of finite element analysis. The boundary conditions on the basis of existing research has been simplified. In this paper, the whole femur was assumed to be isotropic linear elastic material. Predicted the behavior of the femur according to the loading condition, it can be help the development of high-precision artificial bones and joints can be treated with surgery and will be able to perform efficiently.