• Title/Summary/Keyword: Joint Loading

Search Result 764, Processing Time 0.023 seconds

Estimation of Bolted Joint Strength of Flat Plate of Glass-Mat Reinforced Thermoplastics (GMT 평판의 볼트조인트 강도 평가)

  • Kang, Wan-Seok;Min, Ji-Hyun;Lee, Jae-Wook;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1636-1643
    • /
    • 2003
  • In this study, bolted joint made of Glass-Mat Reinforced Thermoplastics (GMT) specimen was under tensile loading to investigate the relation between joint strength and glass-fiber weight fraction of the flat plate specimen. The effect of molding conditions such as the initial size of a GMT charge and molding temperatures was investigated under plane strain condition. In consideration of the specimen geometry, minimum end distance and width of the specimen to induce the bearing fracture mode of the bolted joint were determined. And finally, the effect of the outer diameter of washer and clamping pressure on joint strength was also investigated. Since joint strength is dependent on the local glass-fiber weight fraction, experimentally measured strength was modified, considering its irregular values of the specimen molded under various processing conditions in order to obtain a reasonable correlation between the two.

Study on the static and fatigue characteristics of the composite hybrid joint with uni-direction fiber orientation (일방향 복합재료 하이브리드 조인트의 정적 및 피로특성에 관한 연구)

  • Kim Byung Chul;Lim Tae Seong;Park Dong Chang;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.228-231
    • /
    • 2004
  • For the bolted joint of the composite structure, quasi-isotropic stacking is generally used to increase the bearing strength. For the bolted joint of uni-directional composite, the fatigue life limit of the bolted joint can be improved by applying clamping force though the static strength is still very low. In this paper, the static and fatigue characteristics of hybrid joint are investigated which can overcome the disadvantage of the bolted joint of uni-directional composite under static loading by applying adhesive joining. The experimental result shows that the static strength and fatigue life can be improved by applying clamping force to the hybrid joint and the hybrid joint is a good solution for the efficiency of the composite structures.

  • PDF

Behaviour of RC beam-column joint with varying location of construction joints in the column

  • Vanlalruata, Jonathan;Marthong, Comingstarful
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.29-38
    • /
    • 2021
  • According to ACI 224.3R-95 (ACI, 2013), construction joints (cold joint) in the column are to be provided at the top of floor slab for column continuing to the next floor and underside of floor slab and beam. A recent study reveals that providing cold joint of the mentioned location significantly reduced the seismic performance of the frame structures. Since, the construction joints in multi-story frame structures normally provided at the top of the floor slabs and at soffit of the beam in the column. This study investigated the effect of construction joint at various location in the column of beam-column joint such as at the top of floor slab, soffit level of the beam, half the depth of beam below the soffit of the beam and at a full depth of the beam below the soffit of the beam. The study revealed that there is an improvement in seismic capacity of the specimens as the location of cold joint is placed away from the soffit of the beam for lower story column.

Numerical simulation of shear mechanism of concrete specimens containing two coplanar flaws under biaxial loading

  • Sarfarazi, Vahab;Haeri, Hadi;Bagheri, Kourosh
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.459-468
    • /
    • 2018
  • In this paper, the effect of non-persistent joints was determined on the behavior of concrete specimens subjected to biaxial loading through numerical modeling using particle flow code in two dimensions (PFC2D). Firstly, a numerical model was calibrated by uniaxial, Brazilian and triaxial experimental results to ensure the conformity of the simulated numerical model's response. Secondly, sixteen rectangular models with dimension of 100 mm by 100 mm were developed. Each model contains two non-persistent joints with lengths of 40 mm and 20 mm, respectively. The angularity of the larger joint changes from $30^{\circ}$ to $90^{\circ}$. In each configuration, the small joint angularity changes from $0^{\circ}$ to $90^{\circ}$ in $30^{\circ}$ increments. All of the models were under confining stress of 1 MPa. By using of the biaxial test configuration, the failure process was visually observed. Discrete element simulations demonstrated that macro shear fractures in models are because of microscopic tensile breakage of a large number of bonded discs. The failure pattern in Rock Bridge is mostly affected by joint overlapping whereas the biaxial strength is closely related to the failure pattern.

Development of dynamic behavior of the novel composite T-joints: Numerical and experimental

  • Mokhtari, Madjid;Shahravi, Morteza;Zabihpoor, Mahmood
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.385-400
    • /
    • 2018
  • In this paper dynamic behavior (modal analysis and dynamic transient response) of a novel sandwich T-joint is numerically and experimentally investigated. An epoxy adhesive is selected for bonding purpose and making the step wise graded behavior of adhesive region. The effect of the step graded behavior of the adhesive zone on dynamic behavior of a sandwich T-joint is numerically studied. Finite element analysis (FEA) of the T-joints with carbon fiber reinforced polymer (CFRP) face-sheets is performed by ABAQUS 6.12-1 FEM code software. Modal analysis and dynamic half-sine transient response of the sandwich T-joint are presented in this paper. Two verification processes employed to verify the dynamic modeling of the manufactured sandwich panels and T-joint modeling. It has been shown that the step wise graded adhesive zone cases have changed the second natural frequency by about 5%. Also, it has been shown that the different arranges in the step wise graded adhesive zone significantly affect the maximum stresses due to transient dynamic loading by 1112% decrease in maximum peel stress and 691.9% decrease in maximum shear stress on the adhesive region.

A Study on Changes in Knee Joint Loading during Stair Gait with Unstable Shoes (계단 보행 시 불안정성 신발 착용에 따른 슬관절 부하에 대한 연구)

  • Park, Ji-Won;Kim, Yun-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.2
    • /
    • pp.74-81
    • /
    • 2014
  • Purpose: The purpose of this study is to compare kinematics and kinetics on the knee joint between stair gait with unstable shoes and barefoot in healthy adult women. Methods: Seventeen healthy adult women were recruited for this study. The subjects performed stair ascent and descent with unstable shoes and barefoot. The experiment was repeated three times for each stair gait with unstable shoes and barefoot. Measurement and analysis of the movements of the knee joint were performed using a three-dimensional analysis system. Results: Statistically significant differences in the knee muscle force of semimembranosus, biceps femoris-long head, biceps femoris-short head and sartorius, patellar ligament, medial gastrocnemius, and lateral gastrocnemius were observed between unstable shoes and barefoot gait during stair ascent. Statistically significant differences in the knee muscle force of sartorius, rectus femoris, medial gastrocnemius, and lateral gastrocnemius were observed between unstable shoes and barefoot gait during stair descent. Statistically significant differences in the knee flexor moment of semitendinosus, biceps femoris-long head, biceps femoris-short head, sartorius, rectus femoris, vastus intermedialis, medial gastrocnemius, and lateral gastrocnemius were observed between unstable shoes and barefoot gait during stair ascent. Conclusion: Therefore, wearing unstable shoes during stair gait in daily life is considered to influence knee joint kinematics and kinetics due to the unstable shoes, and thus suggest the possibility that reducing the risks of pain, and knee osteoarthritis, stabilizing the knee joint caused by changes in the loading of the knee joint.

An Experimental Study for the Hydraulic Behavior of Artificial Rock Joint under Compression and Shear Loading (압축과 전단 하중을 받는 인공 암석 절리의 수리적 거동에 관한 실험적 연구)

  • 이희석;박연주;유광호;이희근
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.45-58
    • /
    • 2000
  • Cyclic shear test system, which is capable of measuring flow rate inside rock joint, was established to investigate the hydraulic behavior of rough rock joints under various loading conditions. Laboratory hydraulic tests during compression and shear were conducted for artificial rough rock joints. Prior to tests, aperture characteristics of specimens were examined by measuring surface topography. Permeability changes under compression were well approximated with several hydraulic model. Hydraulic behavior conformed to dilation characteristics in the first stage, and permeability increased with increase of dilation. As the shear displacement progressed, flow rate became somewhat constant due to gouge production and offset of apertures. Hydraulic behavior under cyclic shear loading was also influenced by the degradation of asperities and gouge production. In addition. the relation between hydraulic aperture and mechanical aperture under compression and shear loading was investigated and compared.

  • PDF

Cyclic response and design procedure of a weak-axis cover-plate moment connection

  • Lu, Linfeng;Xu, Yinglu;Zheng, Huixiao;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.329-345
    • /
    • 2018
  • This paper systematically investigated the mechanical performance of the weak-axis cover-plate connection, including a beam end monotonic loading test and a column top cyclic loading test, and a series of parametric studies for exterior and interior joints under cyclic loading using a nonlinear finite element analysis program ABAQUS, focusing on the influences of the shape of top cover-plate, the length and thickness of the cover-plate, the thickness of the skin plate, and the steel material grade. Results showed that the strains at both edges of the beam flange were greater than the middle's, thus it is necessary to take some technical methods to ensure the construction quality of the beam flange groove weld. The plastic rotation of the exterior joint can satisfy the requirement of FEMA-267 (1995) of 0.03 rad, while only one side connection of interior joint satisfied ANSI/AISC 341-10 under the column top cyclic loading. Changing the shape or the thickness or the length of the cover-plate did not significantly affect the mechanical behaviors of frame joints no matter in exterior joints or interior joints. The length and thickness of the cover-plate recommended by FEMA 267 (1995) is also suitable to the weak-axis cover-plate joint. The minimum skin plate thickness and a design procedure for the weak-axis cover-plate connections were proposed finally.

Numerical Analysis of the Roadbed Settlement beneath Rail Joint Induced by Tilting-Train Loading (틸팅차량 하중에 의한 레일 이음매 하부 노반침하에 대한 수치 해석적 분석)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min;Jung, Du-Hwoe;Han, Sung-Dae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.4 s.23
    • /
    • pp.7-14
    • /
    • 2006
  • The tilting-train being operated in pre-existing rail road has a different running mechanism compared to currently operated trains. Therefore, it needs to investigate the evaluation of the track performance, the stability of the tilting-train in operating condition, and the stability of the roadbed. In this study, when the tilting train is operated in the rail joint with the allowable velocity limited by the track performance and the stability of the tilting-train, the settlement of the roadbed has been evaluated by using numerical analysis. The loading on the ground surface generated by the operating tilting-train generates the settlement of the roadbed. The settlement induced by the tilting-train loading has been compared to the allowable settlement and the factor of safety defined by the ratio of the allowable settlement to the settlement generated by the applied loading is evaluated.

An Experimental Study on Shear on Shear Capacity of Reinforced Concrete Exterior Beam-Column Joint with High Strength Concrete (고강도 재료를 사용한 철근 콘크리트 보.기둥 외부접합부의 전단내력에 관한 실험적 연구)

  • 박기철;황홍순;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.59-66
    • /
    • 1992
  • The objective of this investigation was to dvaluater the factors influencing the vasic shear strength of Exterior Beam-Column Joint. Reversec cyclic loading were carride out for 10 reinforced concrete Exterior Beam-Column subassemblages. All the specimens finally failed in joint shear.

  • PDF