• Title/Summary/Keyword: Joint Element

Search Result 1,279, Processing Time 0.024 seconds

Finite element analysis for 3-D self-contact problems of C.v.joint rubber boots (3차원 자체접촉을 위한 유한요소해석에 의한 등속조인트 고무부트의 변형해석)

  • Lee, H.W.;Kim, S.H.;Lee, C.H.;Huh, H.;Lee, J.H.;Oh, S.T.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2121-2133
    • /
    • 1997
  • A finite element code is developed for 3-D self-contact problems, using continuum elements with a SRI(Selective Reduced Integration) scheme to prevent locking phenomenon by the incompressibility of rubber. Contact treatment is carried out in two ways : using the displacement constraints in case of rigid contact ; and imposing the same contact forces on two contact boundaries in case of self-contact. The finite element code developed is applied to the deformation analysis of C.V.joint boots which maintain lubrication conditions and protect the C.V.joint assembly from impact and dust. The boot accompanies large rotation depending on the rotation of the wheel axis and leading to the self-contact phenomena of the boot bellows. Since this contact phenomenon causes wear of the product and has great influence on the endurance life of the product, it is indispensable to carry out stress analysis of the rubber boots. In case of self-contact, various methods for determining contact forces have been suggested with an appropriate contact formulation. Especially, the types of penetration in self-contact are modularized to accelerate conputation with a contact algorithm.

Failure Study for Knee Joint Through 3D FE Modeling Based on MR Images (자기공명영상 기반 3차원 유한요소모델링을 통한 무릎관절의 파손평가)

  • Bae, Ji-Yong;Park, Jin-Hong;Song, Seong-Geun;Park, Sang-Jin;Jeon, In-Su;Song, Eun-Kyoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.533-539
    • /
    • 2009
  • In this study, the femur, the tibia, the articular cartilage and the menisci are three dimensionally reconstructed using MR images of healthy knee joint in full extension of 26-year-old male. Three dimensional finite element model of the knee joint is fabricated on the reconstructed model. Also, the FE models of ligaments and tendons are attached on the biologically suitable position of the FE model. Bones, articular cartilages and menisci are considered as homogeneous, isotropic and linear elastic materials, and ligaments and tendons are modeled as truss element and nonlinear elastic springs. The numerical results show the contact pressure and the von Mises stress distribution in the soft tissues such as articular cartilages and menisci which can be regarded as important parameters to estimate the failure of the tissues and the pain of the patients.

A Study on Improving the Accuracy of Finite Element Modeling Using System Identification Technique (S. I. 기법을 이용한 유한요소모델의 신뢰도 제고에 관한 연구)

  • 양경택
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.149-160
    • /
    • 1997
  • Mechanical structures are composed of substructures connected by joints and boundary elements. While the finite element representation of plain substructures is well developed and reliable, joints have a lot of uncertainties in being accurately modelled and affect dynamic behavior of a total system. In order to improve the accuracy of a finite element model, a new method is proposed, in which reduced finite element model is combined with a system identification technique. After substructures except joints are modelled with finite element method and joint properties are represented by parameter states, non-linear state equation is derived in which parameter states are multiplied by physical states such as displacements and velocities. So the joint parameter identification is transformed into non-linear state estimation problem. The methods are tested and discussed numerically and the feasibility for physical application has been demonstrated through two example structures.

  • PDF

Rollover Analysis of a Bus using Beam Element and Nonlinear Spring Characteristics (보 요소와 비선형 스프링 특성을 이용한 버스 전복 해석)

  • Park, Su-Jin;Yoo, Wan-Suk;Kwon, Yuen-Ju;Kim, Jin-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2007
  • In case of bus rollover, the body structure of the bus should be designed to ensure the survival space for passengers. So, this study focuses on evaluating rollover strength through a computer simulation using the commercial code, LS-DYNA3D at the initial stage of vehicle development. For this study, section structure was modeled using a simple beam element, and impact boundary conditions required by ECE(Economic Commission for Europe) regulation No.66 were applied. In order to confirm the validity of the beam element bus model, the results compared with the test results and shell element bus model. The analysis errors from beam element bus model are due to the difference in strain energy of joint area between beam and shell model. In this study, a method for the joint modeling was suggested by using nonlinear springs to which the collapse mechanisms were applied.

Vibration Intensity Analysis of Penetration Beam-plate Coupled Structures (관통보와 평판의 연결 구조물에 대한 진동인텐시티 해석)

  • 홍석윤;강연식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2002
  • The transmission of vibration energy through beam-plate junctions in vibration intensity analysis called power new analysis (PFA) has been studied. PFA is an analytic tool for the prediction of frequency averaged vibration response of built-up structures at medium to high frequency ranges. The power transmission and reflection coefficients between the semi-infinite beam and plate are estimated using the wave transmission approach. For the application of the power coefficients to practical complex structures, the numerical methods, such as finite element method are needed to be adapted to the power flow governing equation. To solve the discontinuity of energy density at the joint, joint matrix is developed using energy flow coupling relationships at the beam-plate joint. Using the joint matrix developed in this paper, an idealized ship stem part is modeled with finite element program, and vibration energy density and intensity are calculated.

Fatigue Life Analysis for Solder Joint of Optical Thin Film Filter Device (다층 박막 광학 필터 디바이스의 패키징시 솔더 조인트의 피로파괴 수명 해석)

  • 김명진;이형만
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.19-26
    • /
    • 2003
  • Plastic and creep deformations of a solder joint on thermal cycle play an important role in the reliability of optical telecommunication components. Solder joint strain is increased with the thermal cycle time and it causes mis-alignments and power loss in the optical component. Furthermore, the component can be failed since the deformation exceed the limitation of the fatigue life. We applied the finite element analysis method to solve the problem of the solder joint reliability on thermal cycle. Plastic and creep deformations are calculated by the finite element method. And, the fatigue lire is predicted by using creep-fatigue prediction models with calculated strains. The temperature conditon of the analysis was referred from the Telcordia reliability schedule (-40 to 75). Also, the three ramp renditions, 1/min, 10/min and 50/min, and dwelling time were considered to analyze the differences of results.

  • PDF

Optimal Joint Position in Concrete Pavement Slab over Skewed Box Culvert (수평으로 경사진 박스암거 위 콘크리트 포장 슬래브의 최적 줄눈위치)

  • Yeom, Woo Seong;Jeong, Ho Seong;Yan, Yu;Sohn, Dueck Soo;Lee, Jae Hoon;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.47-55
    • /
    • 2013
  • PURPOSES : The purpose of this study is to investigate the optimal joint positions which can minimize distresses of concrete pavement containing box culvert with horizontally skewed angles. METHODS : The concrete pavement containing the box culvert with different skewed angles and soil cover depths was modeled by 3 dimensional finite element method. The contact boundary condition was used between concrete and soil structures in addition to the nonlinear material property of soil in the finite element model. A dynamic analysis was performed by applying the self weight of pavement, negative temperature gradient of slab, and moving vehicle load simultaneously. RESULTS : In case of zero skewed angle ($0^{\circ}$), the maximum tensile stress of slab was the lowest when the joint was positioned directly over side of box culvert. In case there was a skewed angle, the maximum tensile stress of slab was the lowest when the joint passed the intersection between side of the box culvert and longitudinal centerline of slab. The magnitude of the maximum tensile stress converged to a constant value regardless the joint position from 3m of soil cover depth at all of the horizontally skewed angles. CONCLUSIONS : More reasonable and accurate design of the concrete pavement containing the box culvert can be possible based on the research results.

DEVELOPMENT OF NUMERICAL MODEL FOR THE VISCO-PLASTIC BEHAVIOUR OF THE JOINTED ROCK MASS REINFORCED BY ROCKBOLTS (록볼트로 보강한 절리암반의 점소성거동에 관한 수치해석 모델 개발)

  • Lee, Yeon-Gyu;Lee, Jeong-In;Jo, Tae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.149-157
    • /
    • 1994
  • In this study two dimensional visco-plastic finite element model capable of handling the multi-step excavation was developed for investigating the effect of excavation support sequences on the behavior of underground openings in the jointed rock mass. First, the finite element model which is capable of handling the multi-step excavation is developed and verified. And then the model is combined with visco-plastic joint model. Ubiquitous joint pattern was considered in the model and joint properties in cach set were assumed to be indentical. Passive, full-grouted rockbolts were cosidered in the numerical model. The visco-plastic deformations of joints and rockbolts were assumed to be governed by Mohr-Conlomb and von Mises yield criteria, respectively. With the ability of removing elements, the model can simulate the multi-step excavation-suppport sequences. The reliability and applicability of the model to the stability analysis for the underground excavation in pratice was checked by simulating the behavior of underground crude oil storage caverns under construction.

  • PDF

Evaluation Method of Bonded Strength Considering Stress Singularity in Adhesively Bonded Joints (응력특이성을 고려한 접착이음의 강도평가 방법)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.58-68
    • /
    • 1998
  • Advantages of adhesively bonded joints and techniques of weight reduction have led to increasing use of structural adhesives such as LSI(large scale integration) package, automobile, aircraft in the various industries. In spite of such wide applications of adhesively bonded joints, the evaluation method of bonding strength has not been established. Stress singularity occurs at the interface edges of adhesively bonded joints and it is required to analyze it. In this paper, the stress singularity using 2-dimensional elastic boundary element method (BEM) with the changes of the lap length and adhesive for single lap joint was analyzed, and experiments of strength evaluation were carried out. As the results, the evaluating method of bonding strength considering stress singularity at interface edges of adhesively bonded joints and stress intensity factor of interface crack have been proposed in static and fatigue test.

  • PDF

Analysis of stress distribution around tunnels by hybridized FSM and DDM considering the influences of joints parameters

  • Nikadat, Nooraddin;Marji, Mohammad Fatehi
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.269-288
    • /
    • 2016
  • The jointed rock mass behavior often plays a major role in the design of underground excavation, and their failures during excavation and in operation, are usually closely related to joints. This research attempts to evaluate the effects of two basic geometric factors influencing tunnel behavior in a jointed rock mass; joints spacing and joints orientation. A hybridized indirect boundary element code known as TFSDDM (Two-dimensional Fictitious Stress Displacement Discontinuity Method) is used to study the stress distribution around the tunnels excavated in jointed rock masses. This numerical analysis revealed that both the dip angle and spacing of joints have important influences on stress distribution on tunnel walls. For example the tensile and compressive tangential stresses at the boundary of the circular tunnel increase by reduction in the joint spacing, and by increase the dip joint angle the tensile stress in the tunnel roof decreases.