• Title/Summary/Keyword: Joint Element

Search Result 1,277, Processing Time 0.025 seconds

Numerical Study on the Behavior of Fully Grouted Rock Bolts with Different Boundary Conditions (경계조건의 변화에 따른 전면접착형 록볼트 거동의 수치해석적 연구)

  • Lee, Youn-Kyou;Song, Won-Kyong;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.267-276
    • /
    • 2010
  • In modern rock engineering practice, fully grouted rock bolting is actively employed as a major supporting system, so that understanding the behavior of fully grouted rock bolts is essential for the precise design of rock bolting. Despite its importance, the supporting mechanism of rock bolts has not been fully understood yet. Since most of existing analytical models for rock bolts were developed by drastically simplifying their boundary conditions, they are not suitable for the bolts of in-situ condition. In this study, 3-D elastic FE analysis of fully grouted rock bolts has been conducted to provide insight into the supporting mechanism of the bolt. The distribution of shear and axial stresses along the bolt are investigated with the consideration of different boundary conditions including three different displacement boundary conditions at the bolt head, the presence of intersecting rock joints, and the variation of elastic modulus of adjacent rock. The numerical result reveals that installation of the faceplate at the bolt head plays an important role in mobilizing the supporting action and enhancing the supporting capabilities of the fully grouted rock bolts.

Numerical Analysis of Groundwater Flow through Fractured Rock Mass by Tunneling in a Mountainous Area (산악 지역 내 터널 굴착 시 단열 암반 내 지하수 유동 분석)

  • Kim, Hyoung-Soo;Lee, Ju-Hyun;Ahn, Ju-Hee;Ahn, Gyu-Cheon;Yoon, Woon-Sang
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.281-287
    • /
    • 2006
  • Intake of groundwater by tunneling in a mountainous area mostly results from groundwater flow through fractured parts of total rock mass. For reasonable analysis of this phenomenon the representative joint groups 1, 2, and 3 have been selected by previous investigations, geological/geophysical field tests and boring works. Three dimensional fractures were generated by the FracMan and MAFIC which is a three dimensional finite element model has been used to analyse a groundwater flow through fractured media. Monte Carlo simulation was applied to reduce the uncertainty of this study. The numerical results showed that the average and deviation of amounts of groundwater intaked into tunnel per unit length were $5.40{\times}10^{-1}$ and $3.04{\times}10^{-1}m^3/min/km$. It is concluded that tunnel would be stable on impact of groundwater environment by tunneling because of the lower value than $2.00{\sim}3.00m^3/min/km$ as previous and present standard on the application of tunnel construction.

Dynamic Response Analysis for Upper Structure of 5MW Offshore Wind Turbine System based on Multi-Body Dynamics Simulation (다물체 동역학 시뮬레이션 기반 5MW급 해상풍력발전시스템의 상부구조물에 대한 동적 응답 해석)

  • Lee, Kangsu;Im, Jongsoon;Lee, Jangyong;Song, Chang Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.239-247
    • /
    • 2013
  • Recently renewable energy such as offshore wind energy takes a higher interest due to the depletion of fossil fuel and the environmental pollution. This paper deals with multi-body dynamics (MBD) analysis technique for offshore wind turbine system considering aerodynamic loads and Thevenin equation used for determination of electric generator torque. Dynamic responses of 5MW offshore wind turbine system are evaluated via the MBD analysis, and the system is the horizontal axis wind turbine (HAWT) which generates electricity from the three blades horizontally installed at upwind direction. The aerodynamic loads acting on the blades are computed by AeroDyn code, which is capable of accommodating a generalized dynamic wake using blade element momentum (BEM) theory. In order that the characteristics of dynamic loads and torques on the main joint parts of offshore wind turbine system are simulated similarly such an actual system, flexible body modeling including the actual structural properties are applied for both blade and tower in the multi-body dynamics model.

Effects of Screw Configuration on Biomechanical Stability during Extra-articular Complex Fracture Fixation of the Distal Femur Treated with Locking Compression Plate (잠김 금속판(LCP-DF)을 이용한 대퇴골 원위부의 관절외 복합골절 치료시 나사못 배열에 따른 생체역학적 안정성 분석)

  • Kwon, Gyeong-Je;Jo, Myoung-Lae;Oh, Jong-Keon;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.199-209
    • /
    • 2010
  • The locking compression plates-distal femur(LCP-DF) are being widely used for surgical management of the extra-articular complex fractures of the distal femur. They feature locking mechanism between the screws and the screw holes of the plate to provide stronger fixation force with less number of screws than conventional compression bone plate. However, their biomechanical efficacies are not fully understood, especially regarding the number of the screws inserted and their optimal configurations. In this study, we investigated effects of various screw configurations in the shaft and the condylar regions of the femur in relation to structural stability of LCP-DF system. For this purpose, a baseline 3-D finite element (FE) model of the femur was constructed from CT-scan images of a normal healthy male and was validated. The extra-articular complex fracture of the distal femur was made with a 4-cm defect. Surgical reduction with LCP-DF and bone screws were added laterally. To simulate various cases of post-op screw configurations, screws were inserted in the shaft (3~5 screws) and the condylar (4~6 screws) regions. Particular attention was paid at the shaft region where screws were inserted either in clustered or evenly-spaced fashion. Tied-contact conditions were assigned at the bone screws-plate whereas general contact condition was assumed at the interfaces between LCP-DF and bone screws. Axial compressive load of 1,610N(2.3 BW) was applied on the femoral head to reflect joint reaction force. An average of 5% increase in stiffness was found with increase in screw numbers (from 4 to 6) in the condylar region, as compared to negligible increase (less than 1%) at the shaft regardless of the number of screws inserted or its distribution, whether clustered or evenly-spaced. At the condylar region, screw insertion at the holes near the fracture interface and posterior locations contributed greater increase in stiffness (9~13%) than any other locations. Our results suggested that the screw insertion at the condylar region can be more effective than at the shaft during surgical treatment of fracture of the distal femur with LCP-DF. In addition, screw insertion at the holes close to the fracture interface should be accompanied to ensure better fracture healing.

An Empirical Study on the Establishment of a Korean Co-Prosperity Model (한국형 동반성장 모델구축에 관한 실증 연구: 포스코와 투자관련 중소기업과의 구축 사례를 중심으로)

  • Yun, Jeong-Keun;Lee, Hee-Je;Ryu, Mi-Jin;Lim, Jeong-Min;Seo, Won-Young
    • Journal of Distribution Science
    • /
    • v.11 no.12
    • /
    • pp.13-23
    • /
    • 2013
  • Purpose - There is a dominant opinion that medium and small enterprises in the Korean economy have not developed qualitatively but only towards quantitative growth and, therefore, the unbalanced structure between large enterprises and those that are medium and small has worsened. In particular, this rapid industrialization causes after-effects such as polarization as well as anti-business sentiment, the collapse of the middle class, and hostility against the establishment. The consensus contends that it is difficult for Korea to be an advanced nation without resolving these problems. This paper attempts to suggest a co-prosperity model by limiting the focus to business relations with medium and small manufacturers (with regard to investment among the various co-prosperity institutions of POSCO). These co-prosperity institutions have been established in POSCO; however, it is thought that the development of a co-prosperity model regarding investment in medium and small manufacturers will help many needy investment manufacturers. Research design, data, and methodology - This study analyzes research on the co-prosperity model, using it to examine Korean cases and foreign cases. The co-prosperity model has been continuously extended but is determined to be seriously insufficient. The purpose of this study is to develop the Korean co-prosperity model by reinterpreting it in various aspects. In order to develop the Korean co-prosperity model, this study suggests the case of the establishment of the co-prosperity model by POSCO with medium and small manufacturers with regard to investment. This model is expected to be presented to many enterprises as the future co-prosperity model. Results - To date, analysis of the co-prosperity model itself and the co-prosperity model through the case of POSCO have been suggested. As empirical studies on co-prosperity in Korea are not sufficient, successful models of co-prosperity should be developed in various aspects in future. It is expected that through this study, medium and small manufacturers would have an opportunity to find various growth engines by actively using the cooperation platform and establishing optimized competitiveness of steel material through a steel business model. The ecosystem of enterprises may evolve and be healthier by making more joint products through productive business relationships between large enterprises and those that are medium and small. From the enterprises' ecosystem viewpoint, cooperation between such businesses rather than one-way support is identified as an essential element for the security of inter-competitiveness. Conclusions - Infrastructure should be established to form a dynamic industry ecosystem not by transient efforts in co-prosperity, but by an entire culture of co-prosperity across industries. In this respect, the leading role of public institutions needs to be intensified initially. In addition, the effects of co-prosperity should be extended to blind spots of policies such as third party companies and regions. A precise co-prosperity monitoring system should be established to continuously conduct and extend these efforts.

Numerical Analysis on the Structure Behavior of the Connected Long-span Beam during Excavation in Narrow Streets (도로 폭이 좁은 굴착공사에서 연결부가 적용되는 장지간 주형의 수치해석적 거동 평가)

  • Choi, Kwang-Sou;Ha, Sang-Bong;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • This study evaluates the structural behavior of connected long-span beams applied for excavation in urban areas with a narrow street. Generally, the reliability of the connection is reduced owing to the defect of the upper flange in the connection. An improved connection part was developed to complement the defects in the connected long-span beam. A finite element analysis based on a commercial program, ABAQUS, was employed to evaluate the behavior of the improved connection part. A numerical analysis model was proposed to analyze the high-strength bolt connection and the composite behavior of steel and concrete applied to the improved connection. The suitability of the proposed numerical analysis was verified by comparing the experimental and numerical analysis results of the references. Using the proposed numerical analysis method, the improved and general connections were analyzed and compared with each other. The stress distribution and elastic-plastic behavior of the long-span beam were analyzed numerically. The analysis confirmed that 25% of the compressive stress was improved, resulting in the improvement of structural safety and performance.

Evaluation of Fracture Behavior of Adhesive Layer in Fiber Metal Laminates using Cohesive Zone Models (응집영역모델을 이용한 섬유금속적층판 접착층의 모드 I, II 파괴 거동 물성평가)

  • Lee, Byoung-Eon;Park, Eu-Tteum;Ko, Dae-Cheol;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.45-52
    • /
    • 2016
  • An understanding of the failure mechanisms of the adhesive layer is decisive in interpreting the performance of a particular adhesive joint because the delamination is one of the most common failure modes of the laminated composites such as the fiber metal laminates. The interface between different materials, which is the case between the metal and the composite layers in this study, can be loaded through a combination of fracture modes. All loads can be decomposed into peel stresses, perpendicular to the interface, and two in-plane shear stresses, leading to three basic fracture mode I, II and III. To determine the load causing the delamination growth, the energy release rate should be identified in corresponding criterion involving the critical energy release rate ($G_C$) of the material. The critical energy release rate based on these three modes will be $G_{IC}$, $G_{IIC}$ and $G_{IIIC}$. In this study, to evaluate the fracture behaviors in the fracture mode I and II of the adhesive layer in fiber metal laminates, the double cantilever beam and the end-notched flexure tests were performed using the reference adhesive joints. Furthermore, it is confirmed that the experimental results of the adhesive fracture toughness can be applied by the comparison with the finite element analysis using cohesive zone model.

Acceleration Test Method for Failure Prediction of the End Cap Contact Region of Sodium Cooled Fast Reactor Fuel Rod (소듐냉각 고속로 연료봉단의 접촉부 손상예측을 위한 가속시험 방법)

  • Kim, Hyung-Kyu;Lee, Young-Ho;Lee, Hyun-Seung;Lee, Kang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.375-380
    • /
    • 2017
  • This paper reports the results of an acceleration test to predict the contact-induced failure that could occur at the cylinder-to-hole joint for the fuel rod of a sodium-cooled fast reactor (SFR). To incorporate the fuel life of the SFR currently under development at KAERI (around 35,000 h), the acceleration test method of reliability engineering was adopted in this work. A finite element method was used to evaluate the flow-induced vibration frequency and amplitude for the test parameter values. Five specimens were tested. The failure criterion during the life of the SFR fuel was applied. The S-N curve of the HT-9, the material of concern, was used to obtain the acceleration factor. As a result, a test time of 16.5 h was obtained for each specimen. It was concluded that the $B_{0.004}$ life would be guaranteed for the SFR fuel rods with 99% confidence if no failure was observed at any of the contact surfaces of the five specimens.

Experimental Investigation on Torsional Analysis and Fracture of Tripod Shaft for High-speed Train (고속열차용 트리포드 축의 비틀림 해석 및 파단에 대한 실험적 연구)

  • Lee, Joo Hong;Kim, Do Sik;Nam, Tae Yeon;Lee, Tae Young;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.979-986
    • /
    • 2016
  • The tripod shafts of constant-velocity joint are used in both the trains KTX and KTX-sanchon. It is an important component that connects the motor reduction unit and the axle reduction unit in a power bogie. The tripod shaft not only transmits drive and brake torque in the rotational direction, but also slides in the axial direction. If the drive system is loaded with an excessive torque, the fuse part of the shaft will be fractured firstly to protect the other important components. In this study, a rig was developed for conducting torsion tests on the tripod shaft, which is a type of mechanical fuse. The tripod shafts were subjected to torsional fracture test and torsional fatigue test on the rig. The weak zone of the tripod shaft was identified, and its fatigue life was predicted using finite element analysis (FEA). After analyzing the FEA results, design solutions were proposed to improve the strength and fatigue life of the tripod shaft. Furthermore, the deterioration trend and time for failure of the tripod shaft were verified using the hysteresis loops which had been changed with the advancement of the torsional fatigue test.

Transfer of Marketing Knowledge within Multinational Corporations and Its Impact on Performance: Moderating Effects of Absorptive Capacity, Socialization, and Local Knowledge

  • Lee, Byung-Hee
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.277-306
    • /
    • 2008
  • Knowledge1 is considered to be a key element of understanding how organizations gain and sustain competitive advantages. But very few firms are capable of creating the requisite knowledge and thus, firms should acquire and exploit new knowledge through knowledge transfer processes. The empirical part of this study involves examining relationships among adaptability of knowledge and knowledge transfer and marketing performance and testing the moderating roles of absorptive capacity, socialization and local marketing knowledge. This study is organized as follows: (1) Previous literature on knowledge, knowledge transfer and absorptive capacity is summarized, followed by the development of hypotheses derived from the knowledge-based view and absorptive capacity. (2) The hypotheses are tested with data collected from MNCs' subsidiaries performing marketing activities in Korea.Thestudyisclosedwithfindings,implications,andconclusions. Following six research hypotheses are drawn from literature review in related areas: H1: Adaptability of knowledge transferred from the MNCs' headquarters and other subsidiaries is positively associated with knowledge inflows into the receiving subsidiary. H2: The level of marketing knowledge transferred from the MNCs' headquarters and other subsidiaries is positively associated with marketing performance of the receiving subsidiary. H3: Increases in potential absorptive capacity will enhance the relationship between adaptability of knowledge and the level of marketing knowledge transfer. H4: Increases in realized absorptive capacity will enhance the relationship between the level of knowledge transfer and marketing performance of the receiving subsidiary. H5: Increases in socialization activity among the headquarters and subsidiaries will enhance the relationship between adaptability of knowledge and the level of marketing knowledge transfer. H6: Increases in the level of locally developed marketing knowledge will enhance the relationship between the level of knowledge transfer and marketing performance of the receiving subsidiary. The research framework that illustrates the proposed hypotheses is presented in figure 1. The unit of analysis for this study is knowledge transfer from the MNCs' headquarters and other subsidiaries to their subsidiaries operating in South Korea. The population for this study consists of subsidiaries established either as joint ventures or as wholly-owned subsidiaries. A group of 603 foreign firms were drawn from diverse industry organizations and business societies. After personal contact, telephone, fax, and e-mail to request that the respondents complete the questionnaire, 282 valid questionnaires from 133 initial sample companies were collected. The results of the empirical analyses significantly support all of the proposed hypotheses except hypothesis 3. Adaptability of external knowledge promotes knowledge transfer and the relationship is moderated by a firm's potential knowledge absorptive capacity. On the other hand, knowledge transfer improves a firm's marketing performance and a firm's realized knowledge absorptive capacity and local marketing knowledge moderate the relationship. The theoretical and practical implications of the findings in this study are as follows: (1) firms must take seeking, transferring, sharing and exploiting of external knowledge into serious consideration, while simultaneously creating knowledge to support the necessary business operations, remain competitive, and achieve superior performance. (2) Firms should continuously seek to develop their knowledge absorptive capacity (both potential and realized capacity) to absorb, learn and utilize valuable external knowledge. (3) Firms should emphasize not only absorptive capacity, but also development of local knowledge. Firms with strong absorptive capability and local knowledge can learn and transfer more external knowledge, which can be translated into greater levels of competence and performance.

  • PDF