• 제목/요약/키워드: Joint Constraints

검색결과 244건 처리시간 0.029초

추진축이 센터베어링으로 지지된 차량 구동계의 출발시 진동해석 (Vibration Analysis of Driveline with Propeller Shaft Supported by Center Bearing when the Vehicle Starts)

  • 이창노;김효준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1043-1048
    • /
    • 2002
  • This paper considers the vibration problem of vehicle driveline which consists of two propeller shafts and the center bearing. The excessive vibration occurs at the center bearing when the vehicle starts to run. Using the kinematic constraints at the universal joint between two propeller shafts, we develop an one d.o.f model which describes the radial motion of the center bearing. We find out the vibration occurs at the specific vehicle speed corresponding to the natural frequency of the model. Comparing the simulation results with test results we also show that the vibration at low vehicle speed is caused primarily by the joint angle and secondarily by the mis-aligned yoke flange rather than by the unbalance.

  • PDF

이족 보행 로봇의 궤적의 최적화 계획에 관한 연구 (A Study on the Trajectory Optimization Planning of Biped Walking Machine)

  • 김창부;조현석
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.157-167
    • /
    • 1998
  • In this paper it is purpose that reduces joint torques and their rate of change through optimizing trajectory planning of biped walking machine. The motion of biped walking machine is divided into leg motion for walking and body motion for keeping balance. The leg motion is planned by three phases, that are deploy, swing, and place phases, in terms of the state of foot against floor. The distribution of time assigned to each phase is optimized and that causes leg joint torques and their rate of change to minimize. The body notion is produced by using optimal control theory which minimizes body joint torques and satisfies Z.M.P. constraints defined as region of each phase.

  • PDF

Reconstructing individual hand models from motion capture data

  • Endo, Yui;Tada, Mitsunori;Mochimaru, Masaaki
    • Journal of Computational Design and Engineering
    • /
    • 제1권1호
    • /
    • pp.1-12
    • /
    • 2014
  • In this paper, we propose a new method of reconstructing the hand models for individuals, which include the link structure models, the homologous skin surface models and the homologous tetrahedral mesh models in a reference posture. As for the link structure model, the local coordinate system related to each link consists of the joint rotation center and the axes of joint rotation, which can be estimated based on the trajectories of optimal markers on the relative skin surface region of the subject obtained from the motion capture system. The skin surface model is defined as a three-dimensional triangular mesh, obtained by deforming a template mesh so as to fit the landmark vertices to the relative marker positions obtained motion capture system. In this process, anatomical dimensions for the subject, manually measured by a caliper, are also used as the deformation constraints.

다기능 다관절 로봇의 설계 및 제어 (Design and Control of a Multi-Function and Multi-Joint Robot)

  • 주진화
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 추계학술대회
    • /
    • pp.166-169
    • /
    • 2004
  • In this paper show how to design a redundant robot which is suitable for the multiple task without any constraints on the workspace. The implementation is possible by the rigid connection of a mobile robot and a task robot. Use a five joint articulated robot as the task robot; designed the 3 joint mobile robot for this usage. For a task execution assigned to the redundant robot, not only the task robot but the mobile robot should work in the coordinated way. therefore, a kinematic connection of the two robots should be cleary represented in a frame. And, also the dynamic interaction between the two robots needs to be analyzed. Clarified these issues considering the control of the redundant robot. Finally, demonstrate away of utilization of the redundancy as the cooperation between the mobile robot and the task robot to execute a common task.

  • PDF

Stiffness Analysis of a Low-DOF Parallel Manipulator including the Elastic Deformations of Both Joints and Links (ICCAS 2005)

  • Kim, Han-Sung;Shin, Chang-Rok;Kyung, Jin-Ho;Ha, Young-Ho;Yu, Han-Sik;Shim, Poong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.631-637
    • /
    • 2005
  • This paper presents a stiffness analysis method for a low-DOF parallel manipulator, which takes into account of elastic deformations of joints and links. A low-DOF parallel manipulator is defined as a spatial parallel manipulator which has less than six degrees of freedom. Differently from the case of a 6-DOF parallel manipulator, the serial chains in a low-DOF parallel manipulator are subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each limb can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness model of an F-DOF parallel manipulator consists of F springs related to the reciprocal screws of actuations and 6-F springs related to the reciprocal screws of constraints, which connect the moving platform to the fixed base in parallel. The $6{times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints. The six spring constants can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; the link can be considered as an Euler beam and the stiffness matrix of rotational or prismatic joint can be modeled as a $6{times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is zero. By summing the elastic deformations in joints and links, the compliance matrix of a serial chain is obtained. Finally, applying the reciprocal screws to the compliance matrix of a serial chain, the compliance values of springs can be determined. As an example of explaining the procedure, the stiffness of the Tricept parallel manipulator has been analyzed.

  • PDF

A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in MEC System

  • Liu, Qinghua;Li, Qingping
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.721-736
    • /
    • 2021
  • For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.

주 관절 경로의 변형을 통한 걷기 동작 수정 (Deforming the Walking Motion with Geometrical Editing)

  • 김미진;이석원
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2021
  • 본 논문에서는 캐릭터의 걷기 동작 데이터를 변형하는 방법을 제안한다. 이를 위하여 주 관절(root joint)의 이동 경로를 그래프로 분석하고 라플라스 연산자를 이용해 변형하는 방법을 사용한다. 주 관절의 경로는 동작 데이터의 각 프레임별 위치와 방향을 정점으로 하고 이를 인접 프레임의 정점과 연결한 그래프 형태로 나타낸다. 주 관절 경로를 라플라스 연산자를 이용하여 좌표계를 변환하고 이를 목표 위치 및 방향에 맞도록 반복적인 방법으로 해를 구하여 변형한다. 이 방법을 이용하여 동작 데이터의 걷기 스타일을 유지하면서 다양한 경로의 걷기 동작을 얻을 수 있게 되며 많은 비용이 드는 동작 데이터 취득을 최소화할 수 있다. 최종 모션은 변형된 주 관절 경로를 기준으로 기존 모션의 다른 관절을 위치시키고 후처리하여 생성한다. 본 논문에서 제안한 방법을 응용함으로써 적은 모션 데이터로도 복잡한 환경에서 캐릭터의 걷는 동작을 생성하는 것을 보인다.

RIS Selection and Energy Efficiency Optimization for Irregular Distributed RIS-assisted Communication Systems

  • Xu Fangmin;Fu Jinzhao;Cao HaiYan;Hu ZhiRui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1823-1840
    • /
    • 2023
  • In order to improve spectral efficiency and reduce power consumption for reconfigurable intelligent surface (RIS) assisted wireless communication systems, a joint design considering irregular RIS topology, RIS on-off switch, power allocation and phase adjustment is investigated in this paper. Firstly, a multi-dimensional variable joint optimization problem is established under multiple constraints, such as the minimum data requirement and power constraints, with the goal of maximizing the system energy efficiency. However, the proposed optimization problem is hard to be resolved due to its property of nonlinear nonconvex integer programming. Then, to tackle this issue, the problem is decomposed into four sub-problems: topology design, phase shift adjustment, power allocation and switch selection. In terms of topology design, Tabu search algorithm is introduced to select the components that play the main role. For RIS switch selection, greedy algorithm is used to turn off the RISs that play the secondary role. Finally, an iterative optimization algorithm with high data-rate and low power consumption is proposed. The simulation results show that the performance of the irregular RIS aided system with topology design and RIS selection is better than that of the fixed topology and the fix number of RISs. In addition, the proposed joint optimization algorithm can effectively improve the data rate and energy efficiency by changing the propagation environment.

완전파형역산결과를 구조적 제약 조건으로 이용한 고해상도 전자탐사 복합역산 알고리듬 개발 (Joint Electromagnetic Inversion with Structure Constraints Using Full-waveform Inversion Result)

  • 정수철;설순지;변중무
    • 지구물리와물리탐사
    • /
    • 제17권4호
    • /
    • pp.187-201
    • /
    • 2014
  • 이종의 물리탐사자료를 이용한 복합역산은 단일 물리탐사자료를 이용한 역산과 비교시, 역산의 불확실성을 줄일 수 있고, 두 탐사자료의 장점을 함께 이용할 수 있다. 탄성파탐사자료를 이용한 역산은 유가스가 집적될 수 있는 복잡한 구조의 탐지에 유리한 장점을 가지지만 탄화수소의 직접적인 탐지에는 한계가 있다. 반면에, 인공송신원 해양전자탐사자료를 이용한 역산은 탄성파탐사자료를 이용한 역산결과에 비하여 해상도는 떨어지지만 유가스의 직접적인 탐지가 가능하다. 이 연구에서는 평면파를 이용한 완전파형역산을 통하여 획득한 고해상도의P파 속도모델을 cross-gradient 기법에 기반하여 구조적인 제약조건으로 사용하는 전자탐사 복합역산 알고리듬을 개발하였다. 개발된 알고리듬을 유가스전 탐사에 적용이 가능한지 확인하기 위하여, 가스층이 존재하는 단순구조의 모델과 배사구조에 오일저류층이 존재하는 모델의 합성탐사자료에 적용한 결과, 전자탐사자료만을 이용한 역산결과보다 복합역산을 이용한 결과가 보다 고해상도의 전기비저항 분포의 파악이 가능함을 보여주었다. 이는 오일저류층의 정확한 매장 위치 추정과, 매장량 계산에 보다 정확한 정보를 제공해 줄 것으로 기대된다.

탈냉전기 미국의 군사작전 개념과 한국군 발전방향 연구-합동작전을 중심으로 (Following the Cold War, both the United States' military operational concept and the Republic of Korea Army's developmental study)

  • 이세한
    • 안보군사학연구
    • /
    • 통권2호
    • /
    • pp.121-163
    • /
    • 2004
  • Science technique development expanded into, not only land, sea, and air operations but also those of airspace, and cyber battle spaces. It is generally accepted at this time that space centric operations currently cannot be effectively divided from air operations. However, science and technology advancements make it possible to integrate Army, Navy, Airforce, and Marine forces into effective operations as never before. The Republic of Korea Armed Forces needs to establish a more effective joint concept. The US military, considered by many experts as the most effective in the world, understands the necessity of joint operations and accordingly has highly developed its own concept of joint operations. The US joint operational concepts demonstrated their effectiveness during the Iraqi War by dominating the battlefield through effective use of all combat and non-combat power. Following the US Iraqi War experience, the US Department of Defense continued to enhance Joint Capability through the acceleration of US Military Transformation involving all components. The future national security of the Republic of Korea, faced with the peculiarity of communist threat in the form of North Korea, and the conflicting interest of four strong powers; the United States, China, Japan, and Russia, depends on small but strong armed forces employing all available combat power through effective National and Military Strategy, and considering domestic and international constraints. In order to succeed in future wars, military operations following joint operational concepts must effectively employ all available combat power in a timely manner. The Republic of Korea Armed Forces must establish a joint forces concept in order to integrate all available combat power during employment. Therefore we must establish military operations that develop the military structure and organization, doctrine, weapon systems, training and education of our armed forces based on the key concept of joint operations.

  • PDF