• Title/Summary/Keyword: Joint/connection

Search Result 567, Processing Time 0.025 seconds

Design and Control of a Multi-Function and Multi-Joint Robot (다기능 다관절 로봇의 설계 및 제어)

  • Joo Jin-Hwa
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.166-169
    • /
    • 2004
  • In this paper show how to design a redundant robot which is suitable for the multiple task without any constraints on the workspace. The implementation is possible by the rigid connection of a mobile robot and a task robot. Use a five joint articulated robot as the task robot; designed the 3 joint mobile robot for this usage. For a task execution assigned to the redundant robot, not only the task robot but the mobile robot should work in the coordinated way. therefore, a kinematic connection of the two robots should be cleary represented in a frame. And, also the dynamic interaction between the two robots needs to be analyzed. Clarified these issues considering the control of the redundant robot. Finally, demonstrate away of utilization of the redundancy as the cooperation between the mobile robot and the task robot to execute a common task.

  • PDF

Parametrical study of the behavior of exterior unreinforced concrete beam-column joints through numerical modeling

  • Silva, Matheus F.A.;Haach, Vladimir G.
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.215-233
    • /
    • 2016
  • Exterior beam-column joints are structural elements that ensure connection between beams and columns. The joint strength is generally assumed to be governed by the structural element of lowest load capacity (beam or column), however, the joint may be the weakest link. The joint shear behavior is still not well understood due to the influence of several variables, such as geometry of the connection, stress level in the column, concrete strength and longitudinal beam reinforcement. A parametrical study based only on experiments would be impracticable and not necessarily exposes the failure mechanisms. This paper reports on a set of numerical simulations conducted in DIANA$^{(R)}$ software for the investigation of the shear strength of exterior joints. The geometry of the joints and stress level on the column are the variables evaluated. Results have led to empirical expressions that provide the shear strength of unreinforced exterior beam-column joints.

Joint Shear Behavior Prediction for RC Beam-Column Connections

  • LaFave, James M.;Kim, Jae-Hong
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 2011
  • An extensive database has been constructed of reinforced concrete (RC) beam-column connection tests subjected to cyclic lateral loading. All cases within the database experienced joint shear failure, either in conjunction with or without yielding of longitudinal beam reinforcement. Using the experimental database, envelope curves of joint shear stress vs. joint shear strain behavior have been created by connecting key points such as cracking, yielding, and peak loading. Various prediction approaches for RC joint shear behavior are discussed using the constructed experimental database. RC joint shear strength and deformation models are first presented using the database in conjunction with a Bayesian parameter estimation method, and then a complete model applicable to the full range of RC joint shear behavior is suggested. An RC joint shear prediction model following a U.S. standard is next summarized and evaluated. Finally, a particular joint shear prediction model using basic joint shear resistance mechanisms is described and for the first time critically assessed.

Study on seismic performance of connection joint between prefabricated prestressed concrete beams and high strength reinforcement-confined concrete columns

  • Jiang, Haotian;Li, Qingning;Jiang, Weishan;Zhang, De-Yi
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.343-356
    • /
    • 2016
  • As the common cast-in-place construction works fails to meet the enormous construction demand under rapid economic growth, the development of prefabricated structure instead becomes increasingly promising in China. For the prefabricated structure, its load carrying connection joint play a key role in maintaining the structural integrity. Therefore, a novel end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column was proposed. Under action of low cycle repeated horizontal loadings, comparative tests are conducted on 6 prefabricated pre-stressed intermediate joint specimens and 1 cast-in-place joint specimen to obtain the specimen failure modes, hysteresis curves, skeleton curves, ductility factor, stiffness degradation and energy dissipation capacity and other seismic indicators, and the seismic characteristics of the new-type prefabricated beam-column connecting joint are determined. The test results show that all the specimens for end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column have realized the design objectives of strong column weak beam. The hysteretic curves for specimens are good, indicating desirable ductility and energy dissipation capacity and seismic performances, and the research results provide theoretical basis and technical support for the promotion and application of prefabricated assembly frames in the earthquake zone.

Behavior of Stud Connection Subjected to both Constant Axial and Various Bending Moments (축력과 휨을 받는 스터드볼트 접합부의 거동에 관한 실험적 연구)

  • 김승훈;이태석;서수연;이리형;홍원기;백승대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.535-540
    • /
    • 2000
  • When the stud connection is considered as pin joint in the practical design, it is required to have high deformability. The rotational capacity as well as moment of the connection are evaluated through experimental works. Considered in the test are the reinforcement ratios of concrete member, the magnitude of axial force and connection details. It is shown that the stud connection has some quantity of moment capacity buy on the other hand it has low deformability. The strength and deformability of the connection depend on the axial force and reinforcements around the studs. The strength and ductility of the connection ate increased by using closed C-type.

  • PDF

A Study on the Static Behavior of Connection for the Steel-Concrete Hybrid Girder (강-콘크리트 혼합거더 접합부의 정적 거동에 관한 연구)

  • Kim, Moon-Kyum;Lho, Byeong-Cheol;Kim, Jeong-Hoon;Park, Hyun-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.426-429
    • /
    • 2006
  • This paper focuses on the static behavior of prestressed and non-prestressed connections for the steel-concrete hybrid girder. Based on the experimental study, it is found that the girder with non-prestressed connection failed by local concrete failure at the connection area, and the studs are taken out from the concrete. In case of the girder with prestressed joint, the failure of the girder is initiated by the crack at the varying section area. The test results show that the girder with prestressed connection has higher load carrying capacity compare to the girder with non-prestressed connection by 12%. Therefore, the application of prestressing at the concrete-steel connection recommended for the more secure connection.

  • PDF

Investigation of semi-rigid bolted beam connections on prefabricated frame joints

  • Irtem, E.;Turker, K.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.397-408
    • /
    • 2001
  • Bolted connections are used commonly in the precast reinforced concrete structures. In such structures, to perform structural analysis, behaviour of connections must be determined. In this study, elastic rotation stiffness of semi-rigid bolted beam connections, applied in industrial precast structures, are determined by finite element methods. The results obtained from numerical solutions are compared with an experimental study carried out for the same connections. Furthermore, stress distributions of the connection zone are determined and a reinforcement scheme is proposed. Thus, a more appropriate reinforcement arrangement for the connection zone is enabled. The connection joint of the prefabricated frame is described as rigid, hinged or elastic, and a static analysis of the frame system is performed for each case. Values of bending moments and displacements obtained from the three solutions are compared and the effects of elastic connection are discussed.

Introducing a precast moment resistant beam-to-column concrete connection comparable with in-situ one

  • Esmaeili, Jamshid;Ahooghalandary, Neyram
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.203-215
    • /
    • 2019
  • Precast reinforced concrete structure (PRCS) consists of prefabricated members assembled at worksites and has more connections limitations in comparison with the equivalent in-situ reinforced concrete structure (IRCS). As a result of these limitations, PRCSs have less ductility in comparison with IRCSs. Recent studies indicate that the most noticeable failure in PRCSs have occurred in their connection zone. The objective of this study is introducing a type of precast beam-to-column connection (PBC) which in spite of being simple is of the same efficiency and performance as in-situ beam-to-column connection (IBC). To achieve this, the performance of proposed new PBC at exterior joint of a four story PRCS was analyzed by pseudo dynamic analysis and compared with that of IBC in equivalent IRCS. Results indicated that the proposed connection has even better performance in terms of strength, energy dissipation and stiffness, than that of IBC.

Development of Improved PC Stair Connections Using U-Rods (U형 강봉을 사용한 PC 계단 접합부 개발)

  • Chang, Kug-Kwan;Seo, Dae-Won;Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.509-516
    • /
    • 2011
  • Compared with the traditional RC system, precast stairs can save construction time, reduce the cost of concrete casting, etc. This paper focuses on an investigation of improved continuous longitudinal joint details for PC stair systems. The performance of the precast concrete stair connections subjected to displacement control cyclic loading is compared with that of the monolithic connection. The developed connection is composed of U-rods and clamp joint metals. This paper proposes precast stair connection with improved structural performance and experimentally evaluates the structural performance of the proposed joints in terms of maximum load, displacement ductiliy, strain, crack and failure modes.

Cyclic Loading Test for TSC Beam - PSRC Column Connections (TSC 합성보 - PSRC 합성기둥 접합부에 대한 주기하중 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the present study, details of the TSC beam-to-PSRC column connection for low and middle seismic zones were developed. For ease construction, the top and bottom flanges of the steel section of the TSC beam were discontinuous at the joint face on purpose, while the web passes through the joint. Thus, tensile resistance of the top and bottom flanges is not considered in the calculation of nominal strength of the connection. Cyclic loading tests on two interior connections and an exterior connection were performed to verify the seismic performance. The test parameter for two interior connections was the depth of the TSC beams: 600 and 700 mm including the slab depth. The test results showed that the nominal strength of the connections predicted by KBC 2009 correlated well with the test results. The connection specimens exhibited relatively good deformation and energy dissipation capacities, greater than the requirements for the ordinary and intermediate moment frames. Ultimately, the connection specimens were failed at the story drift ratios of 3.0 to 4.0 % due to local buckling and tensile fracture of the web of the TSC beam passing through the joint. By modifying the existing provisions of ASCE, the joint shear strength of the TSC beam-PSRC column connection was evaluated.