Aggregation join queries are an important class of queries over data streams. These queries involve both join and aggregation operations, with window-based joins followed by an aggregation on the join output. All existing research address join query optimization and aggregation query optimization as separate problems. We observe that, by putting them within the same scope of query optimization, more efficient query execution plans are possible through more versatile query transformations. The enabling idea is to perform aggregation before join so that the join execution time may be reduced. There has been some research done on such query transformations in relational databases, but none has been done in data streams. Doing it in data streams brings new challenges due to the incremental and continuous arrival of tuples. These challenges are addressed in this paper. Specifically, we first present a query processing model geared to facilitate query transformations and propose a query transformation rule specialized to work with streams. The rule is simple and yet covers all possible cases of transformation. Then we present a generic query processing algorithm that works with all alternative query execution plans possible with the transformation, and develop the cost formulas of the query execution plans. Based on the processing algorithm, we validate the rule theoretically by proving the equivalence of query execution plans. Finally, through extensive experiments, we validate the cost formulas and study the performances of alternative query execution plans.
최근 LBS(location-based service) 및 텔레매틱스(telematics) 응용의 효율적인 지원을 위해, 기존 유클리디언(Euclidean) 공간 대신, 실제 도로나 철도와 같은 공간 네트워크(network)를 고려한 다수의 연구가 수행되었다. 그러나 Closest Pairs 질의 및 e-distance 조인 질의는, 하나의 POI(Point Of Interest)를 다루는 대신 POI 집합에 대하여 질의처리를 수행하기 때문에 매우 비용이 많이 든다. 아울러, k 값 및 범위의 증가에 따라 질의처리에 필요한 노드 검색 및 거리 계산의 비용이 매우 크게 증가한다. 따라서 본 논문에서는 공간 네트워크를 위한 효율적인 Closest Pairs 질의 및 e-distance 조인 질의 처리를 위해, POI 기반의 실체화 기법을 이용한 효율적인 질의처리 알고리즘을 제안한다. 아울러 기존 질의처리 알고리즘과의 성능 비교를 통하여 제안하는 알고리즘이 검색 성능이 우수함을 보인다.
There has been much interest in stream query processing. Various index techniques and advanced join techniques have been proposed to efficiently process data stream queries. Previous proposals support rapid and advanced response to the data stream queries. However, the amount of data stream is increasing and the data stream query processing needs more speedup than before. In this paper, we proposed novel query processing techniques for large number of incoming documents stream. We proposed Dissection Technique for efficient query processing in the data stream environment. We focused on the dissection technique in join query processing. Our technique shows efficient operation performance comparing with the other proposal in the data stream. Proposed technique is applied to the sensor network system and XML database.
XML 데이타를 대상으로 선형 질의나 가지모양 질의 같은 복잡한 질의가 많이 연구되고 있다. 이와 같은 질의를 처리하기 위해 XML 데이타를 구조정보에 의해 미리 인코딩한 후, 질의 처리시 구조정보를 이용하여 빠르게 질의를 수행하는 구조 조인 알고리즘들이 제안되었다. 그 중 최근에 제안된 TwigStack 알고리즘과 TSGeneric 알고리즘은 각각 인덱스가 없는 환경과 있는 환경에서 수행시간이 입력 데이타의 양과 비례하는 최적의 성능을 보여주었다. 하지만 이들 알고리즘은 질의의 길이(질의에 나타난 엘리먼트 개수)에 비례하여 입력데이타의 양이 증가하고, 따라서 수행시간이 길어진다는 제한점이 있다. 이 논문에서는 기존의 구조 조인 알고리즘들에 구조 인덱스를 결함한 세그먼트 조인 기법을 제안한다. 이 기법은 질의 노드와 노드 간의 구조 조인과는 달리, 구조 인덱스를 이용하여 일련의 질의 노드들을 하나의 세그먼트로 식별한 후 세그먼트와 세그먼트 사이의 조인을 수행한다. 그 결과 세그먼트마다 하나의 질의 노드만을 읽음에 의해 질의를 처리할 수 있게 되어 수행성능이 향상된다. 다양한 데이타셋에 대해 인덱스가 없는 환경에서 실험 결과, 세그먼트 조인 기법을 적용한 SegmentTwig 알고리즘은 TwigStack 알고리즘보다 우수한 성능을 보였다.
센서로부터 획득되는 데이터 스트림은 스트림 데이터 간의 인과관계와 같은 다양한 유용한 정보를 포함한다. 센서 스트림에 대한 인과관계 조인질의는 스트림으로부터 인과관계의 (원인, 결과) 쌍을 찾아내는 것이다. 하지만 센서로부터 DSMS로 데이터가 전송될 때 발생하는 지연과 제한된 윈도우 크기로 인해 일부의 인과관계 결과 쌍이 손실될 수 있다. 본 논문에서는 먼저 데이터 스트림에서 인과관계 조인질의를 처리할 때 고려해야할 시간적, 공간적 그리고 시공간적 관점에 대해 관찰하고 이러한 관찰들을 고려한 다양한 슬라이딩 윈도우 처리 방법들을 제안한다. 제안된 방법들의 성능은 다양한 실험들을 통해 평가되어지는데 실험 결과들은 본 논문에서 제안된 방법들이 기존의 FIFO 방법에 비해 인과관계 질의 처리 결과가 더 정확함을 보여준다.
최근 모바일 기술의 발달 및 소셜 네트워크 서비스의 활성화를 통해 사용자 데이터가 급격히 증대되고 있다. 이에 따라 대용량 데이터에 대한 효율적인 데이터 분석 기법에 대한 연구가 활발히 이루어지고 있다. 대표적인 대용량 데이터 분석 기법으로는 맵리듀스 환경에서 보로노이 다이어그램을 이용한 k 최근접점 조인(VkNN-join) 알고리즘이 존재한다. 데이터집합 R, S에 대해, VkNN-join 알고리즘은 부분집합 Ri에 연관된 부분집합 Sj만을 후보탐색 영역으로 선정하여 질의처리를 수행하기 때문에, 대용량 데이터에 대한 join 질의처리 시간을 감소시키는 장점이 존재한다. 그러나 VkNN-join은 보로노이 다이어그램을 사용하기 때문에, 색인 구축 비용이 높은 단점이 존재한다. 아울러 kNN 질의처리를 위한 후보 영역 선정 시 k값에 비례하여 후보영역의 크기가 증가하기 때문에, kNN 연산 오버헤드가 증가하는 문제점이 존재한다. 이를 해결하기 위해 본 논문에서는 대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘을 제안한다. 제안하는 질의처리 알고리즘은 시드 기반의 동적 분할을 통해 색인구조 구축비용을 절감한다. 또한 시드 간 평균 거리를 기반으로 질의 처리 후보 영역을 선정함으로써, kNN-join 질의를 위한 연산 오버헤드를 감소시킨다. 아울러, 성능 평가를 통해 제안하는 기법이 질의처리 시간 측면에서 기존 기법에 비해 우수함을 보인다.
본 논문은 데이타스트림 환경에서 연속질의를 효율적으로 처리하는 방법을 다룬다. 먼저, 기존의 질의 처리 방법을 데이타 엘리먼트와 질의 중에서 어느 것을 먼저 선택하고 수행을 시작하느냐에 따라서, 서로 이원적인 두 가지 방법인 데이타-이니셔티브(data-initiative)와 질의-이니셔티브(query-initiative)로 분류한다. 이러한 분류는 기존의 질의 처리 연구에서 데이타와 질의를 서로 다르게(asymmetrically) 취급하였다는 것에 기인한다. 기존의 연속질의 처리에서는 이원적인 질의 처리 방법 중에서 데이타-이니셔티브 방법만이 사용되었기 때문에, 질의-이니셔티브 방법에서 얻을 수 있는 성능 상의 이점이 간과되었다. 이러한 문제를 해결하기 위해, 데이타와 질의를 동등하게(symmetrically) 볼 수 있다는 점에 착안한다. 본 논문에서는 데이타와 질의의 이원성 모델(Duality Model of Data and Queries)을 제안하고 이 모델에 기반하여 연속질의 처리 문제를 다차원 공간에서의 공간조인 문제로 변환하는 새로운 관점을 제시한다. 그리고, 공간조인 기반 연속질의 처리 알고리즘인 Spatial Join CQ를 제안한다. Spatial Join CQ는 다차원 공간상에 영역으로 표현된 데이타 엘리먼트들의 집합과 질의들의 집합으로부터 서로 겹치는 쌍을 찾음으로써 연속질의를 처리한다. 제안하는 알고리즘은 대칭적인(symmetric) 연산인 공간조인으로 겹치는 영역들을 찾아냄으로써 서로 이원적인 두 가지 질의 처리 방법의 효과를 동시에 얻는다. 성능 평가 결과, 제시하는 알고리즘은 기존의 방법에 비해서 단순 선택 연속질의는 최대 36배, 슬라이딩 윈도우 조인 연속질의는 최대 7배의 성능 향상을 보였다.
논리곱 불리언 질의는 질의에 포함된 키워드들이 모두 나타나는 텍스트 문서들을 검색하는질의로서, 정보검색 시스템에서 가장 널리 사용되는 질의이다. 논리곱 불리언 질의는 검색의 정확도를 높이기 위하여 많은 수의 키워드로 구성된 긴 질의를 사용한다. 이 경우. 키워드 처리 순서가 성능에 크게 영향을 미친다. 기존 정보검색시스템에서는 휴리스틱에 의존하여 키워드 처리 순서를 결정하므로 최적을 보장하지 못한다. 동적 프로그래밍과 같은 기존의 데이타베이스 질의 최적화 알고리즘은 복잡도가 지수적으로 증가하므로(Ο(n2$^{n-1}$)), 키워드 수가 많은 논리곱 불리언 질의에는 적합하지 않다. 본 논문에서는 조인시퀀스 분리성이라는 새로운 개념에 기반한 논리곱 불리언 질의 최적화 알고리즘을 제안한다. 조인 시퀀스 분리성이란 조인에 참여하는 릴레이션들이 어떤 조건을 만족할 경우, 최적 조인 시퀀스가 두 개의 서브 시퀀스로 분리된다는 성질이다. 이 성질을 활용하면 Ο(nlogn)만에 최적 조인 시퀀스를 구할 수 있다. 본 논문에서는 이러한 조인 시퀀스 분리성의 개념을 정형적으로 정의하고 이에 기반한 질의 최적화 알고리즘의 최적성을 이론적으로 증명한다. 그리고, 제안한 질의 최적화 알고리즘의 성능 평가를 위해, 비용 모델을 사용하여 다양한 시뮬레이션을 수행한다. 그 결과, 제안한 알고리즘의 성능이 기존의 휴리스틱 기반 질의 최적화 알고리즘들에 비해 100배 이상 우수함을 보인다. 또한, 동적 프로그래밍 알고리즘에 비해 질의 최적화 시간 면에서 기하 급수적으로 우수함을 보인다(키워드 개수가 10 개일 경우 600배 이상 우수함).
하둡 맵리듀스와 같은 분산 컴퓨팅 플랫폼이 개발됨에 따라, 기존 단일 컴퓨터 상에서 수행되는 질의 처리 기법을 분산 컴퓨팅 환경에서 효율적으로 수행하는 것이 필요하다. 특히, 주어진 두 데이터 집합에서 유사도가 높은 모든 데이터 쌍을 탐색하는 유사 조인 질의를 분산 컴퓨팅 환경에서 수행하려는 연구가 있어 왔다. 그러나 분산 병렬 환경에서의 기존 유사 조인 질의처리 기법은 데이터 전송 비용만을 고려하기 때문에 클러스터 간에 비균등 연산 부하 분산의 문제점이 존재한다. 본 논문에서는 분산 컴퓨팅 환경에서 효율적인 유사 조인 처리를 위한 행렬 기반 부하 분산 알고리즘을 제안한다. 제안하는 알고리즘은 클러스터의 균등 부하 분산을 위해 행렬을 이용하여 예상되는 연산 부하를 측정하고 이에 따라 파티션을 생성한다. 아울러, 클러스터에서 질의 처리에 사용되지 않는 데이터를 필터링함으로서 연산 부하를 감소시킨다. 마지막으로 성능 평가를 통해 제안하는 알고리즘이 기존 기법에 비해 질의 처리 성능 측면에서 우수함을 보인다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권10호
/
pp.5153-5170
/
2016
The benefit of the scalability and flexibility inherent in cloud computing motivates clients to upload data and computation to public cloud servers. Because data is placed on public clouds, which are very likely to reside outside of the trusted domain of clients, this strategy introduces concerns regarding the security of sensitive client data. Thus, to provide sufficient security for the data stored in the cloud, it is essential to encrypt sensitive data before the data are uploaded onto cloud servers. Although data encryption is considered the most effective solution for protecting sensitive data from unauthorized users, it imposes a significant amount of overhead during the query processing phase, due to the limitations of directly executing operations against encrypted data. Recently, substantial research work that addresses the execution of SQL queries against encrypted data has been conducted. However, there has been little research on top-k join query processing over encrypted data within the cloud computing environments. In this paper, we develop an efficient algorithm that processes a top-k join query against encrypted cloud data. The proposed top-k join processing algorithm is, at an early phase, able to prune unpromising data sets which are guaranteed not to produce top-k highest scores. The experiment results show that the proposed approach provides significant performance gains over the naive solution.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.