• Title/Summary/Keyword: Johnson-Cook Material

Search Result 51, Processing Time 0.026 seconds

Turbine Case Containment Capability Evaluation Using Finite Element Analysis (유한요소해석을 이용한 터빈 케이스의 컨테인먼트 성능 평가)

  • Jun-woo Baek;Sang-woo Kim;Soo-yong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.19-27
    • /
    • 2023
  • In this study, we used finite element analysis to conduct a containment capability evaluation of a turbine case. When analyzing the impact behavior of structures subjected to impact loads, it is important to consider the strain rate, as it affects the increase in flow stress. Therefore, we applied three material models (Cowper-Symonds, Johnson-Cook, and Modified Johnson-Cook) for the impact analysis. To validate these material models, we performed an impact test on an aluminum 6061 plate. By comparing and analyzing the experimental and analytical results, we determined that the Modified Johnson-Cook material model exhibited the least error. As a result, we applied this material model to evaluate the containment capability of the turbine case. This evaluation involved determining the occurrence of penetration, as well as the stress and strain induced at the collision area due to the initial velocity of the blade.

Integrating the Hoek-Brown Failure Criterion into the Holmquist-Johnson-Cook Concrete Material Model to Reflect the Characteristics of Field Rock Mass in LS-DYNA Blast Modeling (LS-DYNA 발파 모델링에서 현장암반의 특성을 반영하기 위한 Hoek-Brown 파괴기준과 Holmquist-Johnson-Cook 콘크리트 재료모델의 접목)

  • Choi, Byung-Hee;Sunwoo, Choon;Jung, Yong-Bok
    • Explosives and Blasting
    • /
    • v.38 no.3
    • /
    • pp.15-29
    • /
    • 2020
  • In this paper the Hoek-Brown (HB) failure criterion is integrated into the Holmquist-Johnson-Cook (HJC) concrete material model to reflect the inherent characteristics of field rock masses in LS-DYNA blast modeling. This is intended to emphasize the distinctive characteristics of field rock masses that usually have many geological discontinuities. The replacement is made only for the static strength part of the HJC material model by using a statistical curve fitting technique, and its procedure is described in detail. An example is also given to illustrate the use of the obtained HJC material model. Computation is performed for a plane strain model of a single-hole blasting on a field limestone by using the combination of the fluid-structure interaction (FSI) technique and the multi-material arbitrary Lagrangian Eulerian (MMALE) method in LS-DYNA.

On the Fracture of Polar Class Vessel Structures Subjected to Lateral Impact Loads (횡충격하중을 받는 빙해선박 구조물의 파단에 관한 연구)

  • Min, Dug-Ki;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.281-286
    • /
    • 2012
  • Single frame structures with notches were fractured by applying drop impact loadings at room temperature and low temperature. Johnson-Cook shear failure model has been employed to simulate the fractured single frame structures. Through several numerical analyses, material constants for Johnson-Cook shear failure model have been found producing the cracks resulted from experiments. Fracture strain-stress triaxiality curves at both room temperature and low temperature are presented based on the extracted material constants. It is expected that the fracture strain-stress triaxiality curves can offer objective fracture criteria for the assessment of structural fractures of polar class vessel structures fabricated from DH36 steels. The fracture experiments of single frame structures revealed that the structure on low temperature condition fractures at much lower strain than that on room temperature condition despite the same stress states at both temperatures. In conclusion, the material properties on low temperature condition are essential to estimate the fracture characteristics of steel structures operated in the Northern Sea Route.

Johnson-Cook constitutive relation of sheet metals for an auto-body with a tension split Hopkinson bar apparatus (Tension Split Hopkinson bar를 이용한 자동차 성형용 금속 박판의 Johnson-Cook 구성방정식 결정)

  • Kang, Woo-Jong;Cho, Sang-Soon;Huh, Hoon;Jung, Dong-Taek
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.84-88
    • /
    • 1997
  • The Jonhnson-Cook constitutive relation has been used in dynamic plasticities. The constants of the Jonhson-Cook relation of sheet metals for an autobody is not known yet. In this paper, the material properties of SPCEN, SPCC and SPRC in the high strain rate states have been acquired. A new tension split Hopkinson bar was used in high speed tensile tests of sheet metals. The experimental results acquired from the apparatus are used to determine the constants of Johnson-Cook constitutive relation of sheet metals. This results can be used to analysis of crashworthness.

  • PDF

Flow Stress Determination of Johnson-Cook Model of Ti-6Al-4V Material using 3D Printing Technique (3D 프린팅으로 제작한 Ti-6Al-4V 재료의 Johnson-Cook 모델의 유동 응력 결정)

  • Park, Dae-Gyoun;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.64-69
    • /
    • 2018
  • This paper investigates the compressive deformation behavior of direct metal tooling (DMT), processing titanium alloy (Ti-6Al-4V) parts under high strain loading conditions. Split Hopkinson Pressure Bar (SHPB) experiments were performed to determine the flow stress and the coefficients of the Johnson-Cook model. This model is described as a function of strain, strain rate, and temperature. SHPB experiments were performed to characterize the deformation behavior of specimens made with 3D printers, using Ti-6Al-4V material under high temperature and dynamic loading.

Reliability Estimation and Dynamic Deformation of Polymeric Material Using SHPB Technique and Probability Theory (SHPB 기법과 확률이론을 이용한 고분자재료의 동적거동특성 및 건전성 평가)

  • Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.740-753
    • /
    • 2008
  • The conventional Split Hopkinson Pressure Bar (C-SHPB) technique with aluminum pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials such as hot temperature degraded POM (Poly Oxy Methylene) and PP (Poly Propylene) to obtain more distinguishable experimental signals is used to obtain a dynamic behavior of material deformation under a high strain rate loading condition. An experimental modification with Pulse shaper is introduced to reduce the nonequilibrium on the dynamic material response during a short test period to increase the rise time of the incident pulse for two polymeric materials. For the dynamic stress strain curve obtained from SHPB experiment under high strain rate, the Johnson-Cook model is applied as a constitutive equation, and we verify the applicability of this constitutive equation to the probabilistic reliability estimation method. The methodology to estimate the reliability using the probabilistic method such as the FORM and the SORM has been proposed, after compose the limit state function using Johnson-Cook model. It is found that the failure probability estimated by using the SORM is more reliable than those of the FORM, and the failure probability increases with the increase of applied stress. Moreover, it is noted that the parameters of Johnson-Cook model such as A and n, and applied stress affect the failure probability more than the other random variables according to the sensitivity analysis.

Determination and Verification of Flow Stress of Low-alloy Steel Using Cutting Test (절삭실험을 이용한 저합금강의 유동응력 결정 및 검증)

  • Ahn, Kwang-Woo;Kim, Dong-Hoo;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.50-56
    • /
    • 2014
  • A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.

High-Velocity Impact Behavior Characteristics of Aluminum 6061 (알루미늄 6061의 고속 충격 거동 특성 연구)

  • Byun, Seon-Woo;Ahn, Sang-Hyeon;Baek, Jun-Woo;Lee, Soo-Yong;Roh, Jin-Ho;Jung, Il-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.465-470
    • /
    • 2022
  • This paper studied the high-velocity impact behavior characteristics of metal materials by crosschecking the high-velocity impact analysis with the high-velocity impact experiment results of aluminul 6061. The coefficients of the Huh-Kang material model and the Johnson-Cook fracture model were calculated through quasi-static using MTS-810 and dynamic experimenting using the Hopkinson bar equipment for high-velocity impact analysis. The penetration velocity and shape were predicted through high-velocity impact analysis using the LS-DYNA. The resultes were compared with the experiment results using a high-velocit experiment equipment. It is intended to be used the containment evaluation research for aircraft gas turbine engine blade.

CRASHWORTHINESS ASSESSMENT OF SIDE IMPACT OF AN AUTO-BODY WITH 60TRIP STEEL FOR SIDE MEMBERS

  • Huh, H.;Lim, J.H.;Song, J.H.;Lee, K.S.;Lee, Y.W.;Han, S.S.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.149-156
    • /
    • 2003
  • This paper is concerned with the energy absorption efficiency of auto-body side structures for the conventional steel and 60TRIP high strength steel. In order to evaluate the energy absorption efficiency, the dynamic crash analysis is carried out with the regulation of US-SINCAP. The analysis adopts the Johnson-Cook model for the dynamic material properties, which have been obtained from dynamic material tests. For the sake of the dynamic material properties, the analysis has been accurately peformed for the crashworthiness assesment. The analysis result provides deformed shapes, amounts of penetration and accelerations at several important points during crash. The result confirms that 60TRIP greatly improves the crashworthiness of the side members without sacrificing the weight and thus can be used for the light-weight design of an auto-body.

Effect of material hardening model for canister on finite element cask drop simulation for strain-based acceptance evaluation

  • Kim, Hune-Tae;Seo, Jun-Min;Seo, Ki-Wan;Yoon, Seong-Ho;Kim, Yun-Jae;Oh, Chang-Young
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1098-1108
    • /
    • 2022
  • The effect of the material hardening model of the canister on a finite element vertical cask drop simulation is investigated for the strain-based acceptance evaluation. Three different hardening models are considered in this paper: the isotropic hardening model, the strain rate-dependent Johnson-Cook (J-C) hardening model, and the modified J-C model which are believed to be the most accurate. By comparing the results using the modified J-C model, it is found that the use of the J-C model provides similar or larger stresses and strains depending on the magnitudes of the strain and strain rate. The use of the isotropic hardening model always yields larger stresses and strains. For the strain-based acceptance evaluation, the use of the isotropic hardening model can produce highly conservative assessment results. The use of the J-C model, however, produces satisfactory results.