• Title/Summary/Keyword: John-Cook Model

Search Result 5, Processing Time 0.021 seconds

Development and validation of a numerical model for steel roof cladding subject to static uplift loads

  • Lovisa, Amy C.;Wang, Vincent Z.;Henderson, David J.;Ginger, John D.
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.495-513
    • /
    • 2013
  • Thin, high-strength steel roof cladding is widely used in residential and industrial low-rise buildings and is susceptible to failure during severe wind storms such as cyclones. Current cladding design is heavily reliant on experimental testing for the determination of roof cladding performance. Further study is necessary to evolve current design standards, and numerical modelling of roof cladding can provide an efficient and cost effective means of studying the response of cladding in great detail. This paper details the development of a numerical model that can simulate the static response of corrugated roof cladding. Finite element analysis (FEA) was utilised to determine the response of corrugated cladding subject to a static wind pressure, which included the anisotropic material properties and strain-hardening characteristics of the thin steel roof cladding. The model was then validated by comparing the numerical data with corresponding experimental test results. Based on this comparison, the model was found to successfully predict the fastener reaction, deflection and the characteristics in deformed shape of the cladding. The validated numerical model was then used to predict the response of the cladding subject to a design cyclone pressure trace, excluding fatigue effects, to demonstrate the potential of the model to investigate more complicated loading circumstances.

A study on the Formation of Adiabatic Shear Band of Tungsten Heavy Alloys (텅스텐 중합금의 단열전단밴드 형성 연구)

  • 이승우;문갑태;홍성인
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.187-190
    • /
    • 2002
  • To study adiabatic shear band formation of tungsten heavy alloys, 5 prismatic specimens are loaded by high velocity impacts and treated as plane strain problems. Their volume percent of tungsten particles in WHA are 81%, 93% and 97% respectively and for the fixed 81% volume percent, small size particle model, large size particle model, undulated particle models are considered and then, the effects of particle's volume ratio, geometry and size to the formation of shear band are discussed.

  • PDF

Correlation of internal and external pressures and net pressure factors for cladding design

  • Bodhinayake, Geeth G.;Ginger, John D.;Henderson, David J.
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.219-229
    • /
    • 2020
  • Net pressures on roofs and walls of buildings are dependent on the internal and external pressure fluctuations. The variation of internal and external pressures are influenced by the size and location of the openings. The correlation of external and internal pressure influences the net pressures acting on cladding on different parts of the roof and walls. The peak internal and peak external pressures do not occur simultaneously, therefore, a reduction can be applied to the peak internal and external pressures to obtain a peak net pressure for cladding design. A 1:200 scale wind tunnel model study was conducted to determine the correlations of external and internal pressures and effective reduction to net pressures (i.e., net pressure factors, FC) for roof and wall cladding. The results show that external and internal pressures on the windward roof and wall edges are well correlated. The largest ${\mathcal{C}}_{{\check{p},net}$, highest correlation coefficient and the highest FC are obtained for different wind directions within 90° ≤ θ ≤ 135°, where the large openings are on the windward wall. The study also gives net pressure factors FC for areas on the roof and wall cladding for nominally sealed buildings and the buildings with a large windward wall opening. These factors indicate that a 5% to 10% reduction to the action combination factor, KC specified in AS/NZS 1170.2(2011) is possible for some critical design scenarios.

Maximum a posteriori estimation based wind fragility analysis with application to existing linear or hysteretic shear frames

  • Wang, Vincent Z.;Ginger, John D.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.653-664
    • /
    • 2014
  • Wind fragility analysis provides a quantitative instrument for delineating the safety performance of civil structures under hazardous wind loading conditions such as cyclones and tornados. It has attracted and would be expected to continue to attract intensive research spotlight particularly in the nowadays worldwide context of adapting to the changing climate. One of the challenges encumbering efficacious assessment of the safety performance of existing civil structures is the possible incompleteness of the structural appraisal data. Addressing the issue of the data missingness, the study presented in this paper forms a first attempt to investigate the feasibility of using the expectation-maximization (EM) algorithm and Bayesian techniques to predict the wind fragilities of existing civil structures. Numerical examples of typical linear or hysteretic shear frames are introduced with the wind loads derived from a widely used power spectral density function. Specifically, the application of the maximum a posteriori estimates of the distribution parameters for the story stiffness is examined, and a surrogate model is developed and applied to facilitate the nonlinear response computation when studying the fragilities of the hysteretic shear frame involved.

On the Derivation of Material Constants Associated with Dynamic Behavior of Heat Formed Plates (열성형 판 부재의 동적거동에 관련된 재료상수 산출에 관한 연구)

  • Lee, Joo-Sung;Lim, Hyung-Kyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.105-114
    • /
    • 2016
  • When impact load is applied to a plate structure, a common phenomenon that occurs in structures is plastic deformation accompanied by a large strain and eventually it will experience a fracture accordingly. In this study, for the rational design against accidental limit state, the plastic material constants of steel plate which is formed by line heating and by cold bending procedure have been defined through the numerical simulation for the high speed tension test. The usefulness of the material constants included in Cowper-Symonds model and Johnson-Cook model with the assumption that strain rate can be neglected when strain rate is less than the intermediate speed is verified through comparing the present numerical results with those in references. This paper ends with describing the future study.