Journal of Korea Society of Digital Industry and Information Management
/
v.8
no.1
/
pp.99-105
/
2012
Given the numbers of smartphones, tablets and other mobile devices shipped every day, more and more users are relying on the cloud as the main driver for satisfying their computing needs, whether it is data storage, applications or infrastructure. Mobile cloud computing is simply cloud computing in which at least some of the devices involved are mobile. Each node is owned by a different user and is likely to be mobile. Using mobile hardware for cloud computing has advantages over using traditional hardware. These advantage include computational access to multimedia and sensor data without the need for large network transfer, more efficient access to data stored on other mobile devices and distributed ownership and maintenance of hardware. It is important to predict job execution time in mobile cloud computing because there are many mobile nodes with different capabilities. This paper analyzes the job execution time for mobile cloud computing in terms of network environment and heterogeneous mobile nodes using a mathematical model.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.2
/
pp.670-686
/
2017
MapReduce (MRV1), a popular programming model, proposed by Google, has been well used to process large datasets in Hadoop, an open source cloud platform. Its new version MapReduce 2.0 (MRV2) developed along with the emerging of Yarn has achieved obvious improvement over MRV1. However, MRV2 suffers from long finishing time on certain types of jobs. Speculative Execution (SE) has been presented as an approach to the problem above by backing up those delayed jobs from low-performance machines to higher ones. In this paper, an adaptive SE strategy (ASE) is presented in Hadoop-2.6.0. Experiment results have depicted that the ASE duplicates tasks according to real-time resources usage among work nodes in a cloud. In addition, the performance of MRV2 is largely improved using the ASE strategy on job execution time and resource consumption, whether in a multi-job environment.
In this paper, we research on job migration in a grid computing environment with cactus and MPICH-C2 based on Globus. Our concepts are to perform job migration by finding the site with plenty of computational resources that would decrease execution time in a grid computing environment. The Migration Manager recovers the job from the checkpointing files and restarts the job on the migrated site. To select a migrating site, the proposed method considers system's performance index, cpu's load, network traffic to send migration job tiles and the execution time predicted on a migration site. Then it selects a site with maximal performance gains. By selecting a site with minimum migration time and minimum execution time. this approach implements a more efficient grid computing environment. The proposed method Is proved by effectively decreasing total execution time at the $K\ast{Grid}$.
Journal of the Korea Society of Computer and Information
/
v.22
no.4
/
pp.17-24
/
2017
In this paper, we propose an efficient dynamic workload balancing strategy which improves the performance of high-performance computing system. The key idea of this dynamic workload balancing strategy is to minimize execution time of each job and to maximize the system throughput by effectively using system resource such as CPU, memory. Also, this strategy dynamically allocates job by considering demanded memory size of executing job and workload status of each node. If an overload node occurs due to allocated job, the proposed scheme migrates job, executing in overload nodes, to another free nodes and reduces the waiting time and execution time of job by balancing workload of each node. Through simulation, we show that the proposed dynamic workload balancing strategy based on CPU, memory improves the performance of high-performance computing system compared to previous strategies.
Journal of the Korea Society of Computer and Information
/
v.21
no.1
/
pp.147-153
/
2016
In this paper, we propose an efficient dynamic workload balancing strategy which improves the performance of high-performance computing system. The key idea of this dynamic workload balancing strategy is to minimize execution time of each job and to maximize the system throughput by effectively using system resource such as CPU, memory. Also, this strategy dynamically allocates job by considering demanded memory size of executing job and workload status of each node. If an overload node occurs due to allocated job, the proposed scheme migrates job, executing in overload nodes, to another free nodes and reduces the waiting time and execution time of job by balancing workload of each node. Through simulation, we show that the proposed dynamic workload balancing strategy based on CPU, memory improves the performance of high-performance computing system compared to previous strategies.
Journal of the Korea Society of Computer and Information
/
v.21
no.1
/
pp.125-129
/
2016
In this paper, we propose an efficient dynamic workload balancing strategy which improves the performance of high-performance computing system. The key idea of this dynamic workload balancing strategy is to minimize execution time of each job and to maximize the system throughput by effectively using system resource such as CPU, memory. Also, this strategy dynamically allocates job by considering demanded memory size of executing job and workload status of each node. If an overload node occurs due to allocated job, the proposed scheme migrates job, executing in overload nodes, to another free nodes and reduces the waiting time and execution time of job by balancing workload of each node. Through simulation, we show that the proposed dynamic workload balancing strategy based on CPU, memory improves the performance of high-performance computing system compared to previous strategies.
As large-scale computational applications in various scientific domains have been utilized over many integrated sets of grid computing resources, the difficulty of their execution management and control has been increased. It is beneficial to refer job history generated from many application executions, in order to identify application‘s characteristics and to decide selection policies of grid resource meaningfully. In this paper, we apply a statistical technique, Plackett-Burman design with fold-over (PBDF), for analyzing grid environments and execution history of applications. PBDF design identifies main factors in grid environments and applications, ranks based on how much they affect to their execution time. The effective factors are used for selecting reference job profiles and then preferable resource based on the reference profiles is chosen. An application is performed on the selected resource and its execution result is added to job history. Factor's credit is adjusted according to the actual execution time. For a proof-of-concept, we analyzed job history from an aerospace research grid system to get characteristics of grid resource and applications. We built JARS algorithm and simulated the algorithm with the analyzed job history. The simulation result shows good reliability and considerable performance in grid environment with frequently crashed resources.
Journal of the Korea Society of Computer and Information
/
v.15
no.2
/
pp.1-8
/
2010
In this paper, we propose a scheduling strategy for grid environment that reduces resource cost. This strategy considers resource cost and job failure rate to efficiently allocate local computing resources. The key idea of our strategy is that we use two-level scheduling using remote and local scheduler. The remote scheduler determines the expected total execution times of jobs using the current network and local system status maintained in its resource database and allocates jobs with minimum total execution time to local systems. The local scheduler recalculates the waiting time and execution time of allocated job and uses it to determine whether the job can be processed within the specified deadline. If it cannot finish in time, the job is migrated other local systems, through simulation, we show that it is more effective to reduce the resource cost than the previous Greedy strategy. We also show that the proposed strategy improves the performance compared to previous Greedy strategy.
JSTS:Journal of Semiconductor Technology and Science
/
v.15
no.5
/
pp.511-518
/
2015
As the cost-per-byte of SSDs dramatically decreases, the introduction of SSDs to Hadoop becomes an attractive choice for high performance data processing. In this paper the cost-per-performance of SSD-based Hadoop cluster (SSD-Hadoop) and HDD-based Hadoop cluster (HDD-Hadoop) are evaluated. For this, we propose a MapReduce performance model using queuing network to simulate the execution time of MapReduce job with varying cluster size. To achieve an accurate model, the execution time distribution of MapReduce job is carefully profiled. The developed model can precisely predict the execution time of MapReduce jobs with less than 7% difference for most cases. It is also found that SSD-Hadoop is 20% more cost efficient than HDD-Hadoop because SSD-Hadoop needs a smaller number of nodes than HDD-Hadoop to achieve a comparable performance, according to the results of simulation with varying the number of cluster nodes.
Journal of the Korea Society of Computer and Information
/
v.13
no.5
/
pp.45-52
/
2008
In this paper, we propose an efficient dynamic workload balancing strategy which improves the performance of high-Performance computing system. The key idea of this dynamic workload balancing strategy is to minimize execution time of each job and to maximize the system throughput by effectively using system resource such as CPU, memory. Also, this strategy dynamically allocates job by considering demanded memory size of executing job and workload status of each node. If an overload node occurs due to allocated job, the proposed scheme migrates job, executing in overload nodes, to another free nodes and reduces the waiting time and execution time of job by balancing workload of each node. Through simulation, we show that the proposed dynamic workload balancing strategy based on CPU, memory improves the performance of high-performance computing system compared to previous strategies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.