• Title/Summary/Keyword: Jinpum wheat

Search Result 2, Processing Time 0.014 seconds

Proteomics Approach on Puroindoline Gene of Pre-harvest Sprouting Wheat

  • Kamal, Abu Hena Mostafa;Park, Cheol-Soo;Heo, Hwa-Young;Chung, Keun-Yook;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Woo, Sun-Hee
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.205-212
    • /
    • 2009
  • Wheat (Triticum aestivum L.) grain texture is an important determinant of milling properties and end product use. Two linked genes, puroindoline a (PINA) and puroindoline b (PINB), control most of the genetic variation in wheat grain texture. Wheat seed proteins were examined to identify PINA and PINB gene using two pre-harvest sprouting wheat cultivars; Jinpum (resistant) and Keumgang (susceptible).Wheat seed proteins were separated by two-dimensional electrophoresis with IEF gels over pH ranges: pH 3-10. A total of 73 spots were digested with trypsin resulting peptide fragmentation were analyzed by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/MS). Mass spectra were automatically processed and searched through NCBInr, SWISS-PORT and MSDB database with mono isotopic masses and complete gene sequence were found by UniProt database. Puroindoline a and puroindoline b that is responsible for grain texture related with baking performance and roughness. Two spots were found Pin b (16.7 kDa) and Pin a (16.3 kDa) in Jinpum compare to seven spots were identified Pin a (16.1 kDa, 16.3 kDa) and Pin b (16.7 kDa, 9.5 kDa and 14.4 kDa) in Keumgang. Some selected spots were identified puroindoline like grain softness protein (16.9 kDa, 17 kDa and 18.1 kDa) in Keumgang. Moreover, to gain a better inferring the identification of puroindoline related proteins using proteomics, we accomplished a complete gene sequence of PINA and PINB gene in pre-harvesting sprouting wheat seeds between resistant (Jinpum) and susceptible (Keumgang).

Effect of Temperature on Growth and Related Gene Expression in Alternative Type Wheat Cultivars (양절형 밀 생장에 대한 온도의 영향과 유전자 발현 양상)

  • Heo, Ji Hye;Seong, Hye Ju;Yang, Woon Ho;Jung, Woosuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.384-394
    • /
    • 2019
  • We have investigated the effects of ambient temperature on the growth of wheat in Korea. The differences in the growth phase of wheat were compared according to the temperature treatment. The productive tiller number and dry weight were decreased in a plot under a higher temperature treatment. We found that the growth of Jinpum was different from that of the alternative wheat cultivars, which were bred in Korea, at 50 days after treatment. While the Jinpum wheat grown at 17℃ showed vegetative stage growth, that grown in the 23℃ growth chamber entered the heading and flowering stage. The differences in the expression of 16 genes known to be involved in high-temperature responses were checked by using Jinpum wheat 50 days after two temperature treatments (17℃ and 23℃), which showed apparent differences in expression between the higher and lower temperatures during the growth phase. In the 23℃ treatment samples, the genes with increased expression were HSP70, HSP101, VRN2, ERF1, TAA1, YUCCA2, GolS, MYB73, and Histone H2A, while the genes with decreased expression were VRN-A1, DREB2A, HsfA3, PIF4, PhyB, HSP17.6CII, rbcL, and MYB73. YUCCA2, HSP101, ERF1, and VRN-A1 showed a significant difference in gene expression between lower- and higher-temperature conditions. Overall, combining the means of the expression of various genes involved in thermosensing, vernalization, and abiotic stresses, it is possible to conclude that different sets of genes are involved in vernalization and summer depression of wheat under long term, high ambient temperature conditions.