• Title/Summary/Keyword: Jinhua Pig

Search Result 6, Processing Time 0.019 seconds

Integrated mRNA and miRNA profile expression in livers of Jinhua and Landrace pigs

  • Huang, Minjie;Chen, Lixing;Shen, Yifei;Chen, Jiucheng;Guo, Xiaoling;Xu, Ningying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1483-1490
    • /
    • 2019
  • Objective: To explore the molecular mechanisms of fat metabolism and deposition in pigs, an experiment was conducted to identify hepatic mRNAs and miRNAs expression and determine the potential interaction of them in two phenotypically extreme pig breeds. Methods: mRNA and miRNA profiling of liver from 70-day Jinhua (JH) and Landrace (LD) pigs were performed using RNA sequencing. Blood samples were taken to detect results of serum biochemistry. Bioinformatics analysis were applied to construct differentially expressed miRNA-mRNA network. Results: Serum total triiodothyronine and total thyroxine were significantly lower in Jinhua pigs, but the content of serum total cholesterol (TCH) and low-density lipoprotein cholesterol were strikingly higher. A total of 467 differentially expressed genes (DEGs) and 35 differentially expressed miRNAs (DE miRNAs) were identified between JH and LD groups. Gene ontology analysis suggested that DEGs were involved in oxidation-reduction, lipid biosynthetic and lipid metabolism process. Interaction network of DEGs and DE miRNAs were constructed, according to target prediction results. Conclusion: We generated transcriptome and miRNAome profiles of liver from JH and LD pig breeds which represent distinguishing phenotypes of growth and metabolism. The potential miRNA-mRNA interaction networks may provide a comprehensive understanding in the mechanism of lipid metabolism. These results serve as a basis for further investigation on biological functions of miRNAs in the porcine liver.

Circular RNA expression profiles in the porcine liver of two distinct phenotype pig breeds

  • Huang, Minjie;Shen, Yifei;Mao, Haiguang;Chen, Lixing;Chen, Jiucheng;Guo, Xiaoling;Xu, Ningying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.812-819
    • /
    • 2018
  • Objective: An experiment was conducted to identify and characterize the circular RNA expression and metabolic characteristics in the liver of Jinhua pigs and Landrace pigs. Methods: Three Jinhua pigs and three Landrace pigs respectively at 70-day were slaughtered to collect the liver tissue samples. Immediately after slaughter, blood samples were taken to detect serum biochemical indicators. Total RNA extracted from liver tissue samples were used to prepare the library and then sequence on HiSeq 2500. Bioinformatic methods were employed to analyze sequence data to identify the circRNAs and predict the potential roles of differentially expressed circRNAs between the two breeds. Results: Significant differences in physiological and biochemical traits were observed between growing Jinhua and Landrace pigs. We identified 84,864 circRNA candidates in two breeds and 366 circRNAs were detected as significantly differentially expressed. Their host genes are involved in lipid biosynthetic and metabolic processes according to the gene ontology analysis and associated with metabolic pathways. Conclusion: Our research represents the first description of circRNA profiles in the porcine liver from two divergent phenotype pigs. The predicted miRNA-circRNA interaction provides important basis for miRNA-circRNA relationships in the porcine liver. These data expand the repertories of porcine circRNA and are conducive to understanding the possible molecular mechanisms involved in miRNA and circRNA. Our study provides basic data for further research of the biological functions of circRNAs in the porcine liver.

Phylogenetic and expression analysis of the angiopoietin-like gene family and their role in lipid metabolism in pigs

  • Zibin Zheng;Wentao Lyu;Qihua Hong;Hua Yang;Ying Li;Shengjun Zhao;Ying Ren;Yingping Xiao
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1517-1529
    • /
    • 2023
  • Objective: The objective of this study was to investigate the phylogenetic and expression analysis of the angiopoietin-like (ANGPTL) gene family and their role in lipid metabolism in pigs. Methods: In this study, the amino acid sequence analysis, phylogenetic analysis, and chromosome adjacent gene analysis were performed to identify the ANGPTL gene family in pigs. According to the body weight data from 60 Jinhua pigs, different tissues of 6 pigs with average body weight were used to determine the expression profile of ANGPTL1-8. The ileum, subcutaneous fat, and liver of 8 pigs with distinct fatness were selected to analyze the gene expression of ANGPTL3, ANGPTL4, and ANGPTL8. Results: The sequence length of ANGPTLs in pigs was between 1,186 and 1,991 bp, and the pig ANGPTL family members shared common features with human homologous genes, including the high similarity of the amino acid sequence and chromosome flanking genes. Amino acid sequence analysis showed that ANGPTL1-7 had a highly conserved domain except for ANGPTL8. Phylogenetic analysis showed that each ANGPTL homologous gene shared a common origin. Quantitative reverse-transcription polymerase chain reaction analysis showed that ANGPTL family members had different expression patterns in different tissues. ANGPTL3 and ANGPTL8 were mainly expressed in the liver, while ANGPTL4 was expressed in many other tissues, such as the intestine and subcutaneous fat. The expression levels of ANGPTL3 in the liver and ANGPTL4 in the liver, intestine and subcutaneous fat of Jinhua pigs with low propensity for adipogenesis were significantly higher than those of high propensity for adipogenesis. Conclusion: These results increase our knowledge about the biological role of the ANGPTL family in this important economic species, it will also help to better understand the role of ANGPTL3, ANGPTL4, and ANGPTL8 in lipid metabolism of pigs, and provide innovative ideas for developing strategies to improve meat quality of pigs.

Genetic diversity analysis in Chinese miniature pigs using swine leukocyte antigen complex microsatellites

  • Wu, Jinhua;Liu, Ronghui;Li, Hua;Yu, Hui;Yang, Yalan
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1757-1765
    • /
    • 2021
  • Objective: The swine leukocyte antigen (SLA) gene group, which is closely linked and highly polymorphic, has important biomedical significance in the protection and utilization of germplasm resources. However, genetic polymorphism analyses of SLA microsatellite markers in Chinese miniature pigs are limited. Methods: Eighteen pairs of microsatellite primers were used to amplify the SLA regions of seven miniature pig breeds and three wild boar breeds (n = 346) from different regions of China. The indexes of genetic polymorphism, including expected heterozygosity (He), polymorphic information content (PIC), and haplotype, were analyzed. The genetic differentiation coefficient (Fst) and neighbor-joining methods were used for cluster analysis of the breeds. Results: In miniature pigs, the SLA I region had the highest numbers of polymorphisms, followed by the SLA II and SLA III regions; the region near the centromere had the lowest number of polymorphisms. Among the seven miniature pig breeds, Diannan small-ear pigs had the highest genetic diversity (PIC value = 0.6396), whereas the genetic diversity of the Hebao pig was the lowest (PIC value = 0.4330). The Fst values in the Mingguang small-ear, Diannan small-ear, and Yunnan wild boars were less than 0.05. According to phylogenetic cluster analysis, the South-China-type miniature pigs clustered into one group, among which Mingguang small-ear pigs clustered with Diannan small-ear pigs. Haplotype analysis revealed that the SLA I, II, and III regions could be constructed into 13, 7, and 11 common haplotypes, respectively. Conclusion: This study validates the high genetic diversity of the Chinese miniature pig. Mingguang small-ear pigs have close kinship with Diannan small-ear pigs, implying that they may have similar genetic backgrounds and originate from the same population. This study also provides a foundation for genetic breeding, genetic resource protection, and classification of Chinese miniature pigs.

The fecal microbiota composition of boar Duroc, Yorkshire, Landrace and Hampshire pigs

  • Xiao, Yingping;Li, Kaifeng;Xiang, Yun;Zhou, Weidong;Gui, Guohong;Yang, Hua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1456-1463
    • /
    • 2017
  • Objective: To investigate the effect of host genetics on gut microbial diversity, we performed a structural survey of the fecal microbiota of four purebred boar pig lines: Duroc, Landrace, Hampshire, and Yorkshire. Methods: The V3-V4 regions of the 16S rRNA genes were amplified and sequenced. Results: A total of 783 operational taxonomic units were shared by all breeds, whereas others were breed-specific. Firmicutes and Bacteroidetes dominated the majority of the fecal microbiota; Clostridia, Bacilli, and Bacteroidia were the major classes. Nine predominant genera were observed in all breeds and eight of them can produce short-chain fatty acids. Some bacteria can secrete cellulase to aid fiber digestion by the host. Butyric, isobutyric, valeric, and isovaleric acid levels were highest in Landrace pigs, whereas acetic and propionic acid were highest in the Hampshire breed. Heatmap was used to revealed breed-specific bacteria. Principal coordinate analysis of fecal bacteria revealed that the Landrace and Yorkshire breeds had high similarity and were clearly separated from the Duroc and Hampshire breeds. Conclusion: Overall, this study is the first time to compare the fecal microbiomes of four breeds of boar pig by high-throughput sequencing and to use Spearman's rank correlation to analyze competition and cooperation among the core bacteria.

Selection signature reveals genes associated with susceptibility loci affecting respiratory disease due to pleiotropic and hitchhiking effect in Chinese indigenous pigs

  • Xu, Zhong;Sun, Hao;Zhang, Zhe;Zhang, Cheng-Yue;Zhao, Qing-bo;Xiao, Qian;Olasege, Babatunde Shittu;Ma, Pei-Pei;Zhang, Xiang-Zhe;Wang, Qi-Shan;Pan, Yu-Chun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.187-196
    • /
    • 2020
  • Objective: Porcine respiratory disease is one of the most important health problems causing significant economic losses. To understand the genetic basis for susceptibility to swine enzootic pneumonia (EP) in pigs, we detected 102,809 single nucleotide polymorphisms in a total of 249 individuals based on genome-wide sequencing data. Methods: Genome comparison of susceptibility to swine EP in three pig breeds (Jinhua, Erhualian, and Meishan) with two western lines that are considered more resistant (Duroc and Landrace) using cross-population extended haplotype homozygosity and F-statistic (FST) statistical approaches identified 691 positively selected genes. Based on quantitative trait loci, gene ontology terms and literature search, we selected 14 candidate genes that have convincible biological functions associated with swine EP or human asthma. Results: Most of these genes were tested by several methods including transcription analysis and candidate genes association study. Among these genes: cytochrome P450 1A1 and catenin beta 1 (CTNNB1) are involved in fertility; transforming growth factor beta receptor 3 plays a role in meat quality traits; Wnt family member 2, CTNNB1 and transcription factor 7 take part in adipogenesis and fat deposition simultaneously; plasminogen activator, urokinase receptor (completely linked to AXL receptor tyrosine kinase, r2 = 1) plays an essential role in the successful ovulation of matured oocytes in pigs; colipase like 2 (strongly linked to SAM pointed domain containing ETS transcription factor, r2 = 0.848) is involved in male fertility. Conclusion: These adverse genes susceptible to swine EP may be selected while selecting for economic traits (especially reproduction traits) due to pleiotropic and hitchhiking effect of linked genes. Our study provided a completely new point of view to understand the genetic basis for susceptibility or resistance to swine EP in pigs thereby, provides insight for designing sustainable breed selection programs. Finally, the candidate genes are crucial due to their potential roles in respiratory diseases in a large number of species, including human.