• Title/Summary/Keyword: Jingok abandoned mine

Search Result 3, Processing Time 0.023 seconds

Analysis of mine tailings, field soils, and paddy soils around Jingok abandoned mine (진곡광산 광미와 주변 토양의 오염조사)

  • 김선태;윤양희;박제안;심의섭
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.175-183
    • /
    • 1999
  • Mine tailings, field soils, and paddy soils around Jingok abandoned mine were analyzed In order to investigate their pollution levels of heavy metals and cyanide. The average contents of As, Cd, Cu. Hg. Pb, Zn, and CN ̄in mine tailings were 3.94$\times$$10^3$, 14.3, 266, 6.13, 4.07$\times$$10^3$, 2.51$\times$$10^3$, and 1.19mg/kg, respectively. The pollution indices calculated by the tolerance level of Kloke were 32~58 and the pH values were slightly acidic in mine tailings. In the field and paddy soils of Jingok abandoned mine area except for soils nearby mine tailings, concentrations of the heavy metals were less than standards of soil pollution of agricultural area in the environmental protection law.

  • PDF

Analysis of Microbial Community Structure in Mine Tailings of Abandoned Mines Over the Depth Using Quinone Profiles (Quinone Profile법을 이용한 폐광산 광미내에 존재하는 깊이별 미생물 군집구조해석)

  • Lim, Byung-Ran;Kim, Myoung-Jin;Ahn, Kyu-Hong;Hwang, Hyun-Jung;Lee, Ki-Say
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.670-674
    • /
    • 2005
  • The respiratory quinone profile was used as a tool for the study on microbial community structure in the mine tailings of abandoned mines over the depth. For the study, the area of Jingok mine located in Bongwha, Korea has been selected. The distributions of Cd, Cu, Pb, Al, Fe and Mn showed the following common patterns; the highest values in the upper part of mine failings (0-20 cm), rapid decrease with increasing depth. The dominant quinone species of the mine tailings were UQ-9 followed by UQ-10, suggesting that microbes had contributed to heavy metal degradation. The quinone contents in mine tailings ranged from 5.0 to 24.9 nmol/kg. The microbial diversity in the upper part of mine tailings (0-40 cm) was higher than that of lower part of mine tailings (100-120 cm).

Identification of soil Remedial Goal due to Arsenic in Soil near Abandoned Mine- Approach to Regarding Future Land Use - (폐광산 지역의 비소오염에 대한 복원목표 설정 - 미래 토지용도를 고려한 접근방법 -)

  • 이효민;윤은경;최시내;박송자;황경엽;조성용;김선태
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.13-29
    • /
    • 1998
  • Recently, It is increasing popularity to research on the soil remediation in aspect of management by reason of the hazardous impact on the contaminated soil in Korea. It was investigated high levels of arsenic salts in soil near abandoned five mines(Darak, Daduk, Jingok, Dalsung, Ilkwang) located in Youngnam area. Arsenic, classified as group A(Human Carcinogens) from IRIS, have shown statistically significant increment in skin cancer with oral exposure. This paper was conducted to predict excess cancer risk value (to the skin cancer) based on multiple pathway such as soil ingestion, dermal uptake and food(plant) ingestion contaminated by arsenic, and also, to identify the remedial goal regarded in future land use. The mine having the highest arsenic level was Daduk(mean : 1950mg/kg) and the next rank was Jingok(1690mg/kg), Ilkwang(352.37mg/kg), Dalsung(86.08mg/kg), Darak(0.83mg/kg). The chronic daily intake to the multiple exposure were calculated using Monte-Carlo simulation regarded in future land use and used q: value was $1.5(mg/kg/day)^{-1}$ to the oral proposed by IRIS(1997). The computated excess cancer risk 95th value to all the mine regarding future land use as residential and rural area were more than $10^{-4}$. If the level of acceptable risk is aimed for 1$\times$$10^{-6}$, it could be used Darak as commercial and industrial area without soil remediation due to the lowest risk value(6$\times$$10^{-8}$ and 3$\times$$10^{-8}$). Computated remedial goal based on 1$\times$$10^{-6}$ of acceptable risk to the future land use as the residential, rural, commercial and industrial area were 0.02mg/kg, 0.003mg/kg, 97.31mg/kg and 194.62mg/kg, respectively.

  • PDF