• Title/Summary/Keyword: Jigunsan Shale

Search Result 5, Processing Time 0.017 seconds

Graptolites from the Jigunsan Shale of Taebaeg Area, Korea

  • Kim Jeong Yul;Kwon Ji Yeun;Kim Kyung-Soo;Cho Hyun Su
    • Journal of the Korean earth science society
    • /
    • v.26 no.2
    • /
    • pp.137-148
    • /
    • 2005
  • Five species of graptolites were discovered from the Jigunsan Shale of Taebaeg area, Korea. They are herein described as Archiclimacograptus riddellensis (Harris, 1924), Pseudamplexograptus distichus(Eichwald, 1840), Hustedograptus teretiusculus(Hisinger) sensu Jaanusson, 1960, Hustedograptus vikarbyensis (Jaanusson, 1960), and Hustedograptus sp. The graptolite assemblage from the Jigunsan Shale corresponds to those of the Pseudamplexograptus distichus zone in the Baltic and German areas and the geologic age of graptolites bearing beds of the Jigunsan Shale might be late Middle Llanvirn.

Geochemical Study of the Jigunsan Shale: A Sequence Stratigraphic Application to Defining a Middle Ordovician Condensed Section, Taebacksan (Taebaeksan) Basin (직운산 세일층의 지화학적 연구: 태박산분지 오오도비스 중기 응축층 규명을 위한 시퀀스층서학적 적용)

  • Ryu, In-Chang;Ryu, Sun-Young;Son, Byeong-Kook
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.27-53
    • /
    • 2009
  • A 30-m-thick Middle Ordovician Jigunsan Shale exposed along the southern limb of the Backunsan (Baekunsan) Syncline, Taebacksan (Taebaeksan) basin, has been simply considered as a transgressive shale sequence onlapped the underlying Maggol platform carbonates. Results of this study, however, suggest that majority of the Jigunsan Shale be interpreted as a regressive shale sequence downlapped onto a thin (ca. 240 cm) marine stratigraphic unit consisting of organic-rich (>3 wt.% of TOC) black shales in the lower Jigunsan Shale, which was accumulated at the time of maximum regional transgression. Detailed stratigraphic analysis in conjunction with XRD, XRF, and ICP-MS as well as Rock-Eval pyrolysis allows the thin marine stratigraphic unit in the Jigunsan Shale to define a condensed section that was deposited in a distinctive euxinic zone formed due to expansion of pycnocline during the early highstand phase. As well, a number of stratigraphic horizons of distinctive character that may have sequence stratigraphic or environmental significance, such as transgressive surface, maximum flooding surface, maximum sediment starvation surface, and downlap surface, are identified in the lower Jigunsan Shale. In the future, these stratigraphic horizons will provide very useful information to make a coherent regional stratigraphic correlation of the Middle Ordovician strata and to develop a comprehensive understanding on stratigraphic response to tectonic evolution as well as basin history of the Taebacksan Basin.

The Yemi Breccia : Origin and Stratigraphic Implications (예미각력암 : 성인과 층서적 의미)

  • Woo Kyung Sik
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.16-26
    • /
    • 1997
  • The Yemi Breccia has been reported as a separate formation near Yemi area, Kangwondo. This formation overlies the Maggot Formation of the Joseon Supergroup unconformably, and is overlain by the Goseong Shale conformably. Based on the field observation and textural examination of the Yemi Breccia, the breccia beds are interpreted as soluton-collapse breccia beds, which were formed by the dissolution of the pre-existing evaporites. The evaporites were precipitated during the deposition of the upper part of the Maggot Formation. Therefore, the Yemi Breccia should not be regarded as a separate formation, instead, it should be considered to be a upper part of the Maggot Formation. This implies that the overlying Goseong Shale and Goseong Limestone can be correlated with the Jigunsan and Duwibong Formtions, respectively.

  • PDF

Comparison of the Paleontological Heritages of South Korea with Those of North Korea: Implications for Potential International Heritages

  • Kim, Jeong Yul;Park, Won Mi
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.67-88
    • /
    • 2018
  • The important PH (paleontological heritages) with scientific, educational and esthetic values designated as natural monuments and protected by legislations of South and North Koreas are herein compared for the first time. On the basis of data (Jan. 2017) provided by the Cultural Heritage Administration of (South) Korea, a total of 457 natural monuments was designated. Of these, geological heritages are 80 in number, which includes 24 (30%) PH. Data (Dec. 2005) of North Korea show that a total of 474 natural monuments was designated. Among these, geological and geographical ones are 154 in number, which includes 22 (14%) PH. Differences between PH of South and North Koreas are regarded to be directly related with geological difference in distribution of the fossil-bearing strata between South and North Koreas. PH of Silurian corals, Devonian plants, Jurassic fishes, Cretaceous dinosaur tracks, birds (so called Korean Archaeopteryx) and pterosaurs, and Pleistocene paleoanthropological fossils appear to be scientifically significant. Together with these North Korean PH, scientific, esthetic, conservational, educational, and economical values of important PH including KCDC (Korean Cretaceous Dinosaur Coast), Jigunsan Shale, and Geumgwangdong Shale of South Korea should be evaluated as potential future candidates for international heritages.

Illite, Reviewed on the Chemical Compositions - The Mixed Phase among Muscovite, Pyrophyllite and Chlorite: EPMA Quantitative Analysis of Shale from the Jigunsan Formation at Seokgaejae in Samchuk-City, Gangwon-do (화학조성으로 다시 보는 일라이트-백운모, 파이로필라이트 및 녹니석의 혼합상: 강원도 삼척시 석개재에 분포하는 직운산층 셰일에 대한 EPMA 정량분석)

  • Choi, Seung-Hyun;Mun, Hyang-Ran;Lee, Young-Boo;Lee, Jung-Hoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.143-153
    • /
    • 2012
  • Mica-type minerals (illites) in the shales of the Jigunsan formation at Seokgaejae in Samchuk-City, Gangwon-do are studied using electron probe micro analysis (EPMA). The average chemical formula of the mica-type mineral obtained from the quantitative analysis is $(K_{1.17}Na_{0.04}Ca_{0.01})(Al_{2.80}Mg_{1.17}Fe_{0.78})(Si_{6.34}Al_{1.66})O_{20}(OH)_4$, which shows a chemical formula within the range of illite. These illites so called can be considered as mixed-phases among muscovite, pyrophyllite and chlorite due to the low contents of interlayer cations and high Mg, Fe. The formula of illite is separated into those three minerals and the method for the separation is newly formulated and proposed in this study. From the formula of illite, the content of muscovite is estimated from K (Na and Ca included), the content of chlorite by Mg+Fe, and the rest remains as pyrophyllite. The chemical formula of muscovite can be calculated by subtracting the compositions of pyrophyllite and chlorite from the analyzed composition of illite using an ideal formula for pyrophyllite and analyzed average formula for chlorite. The calculated formula of muscovite is supposed to be stoichiometric in principle. The result of the separation of analyzed illite is 61% muscovite, 27.3% chlorite and 11.7% pyrophyllite and the calculated formula of muscovite after separation is $(K,Na,Ca)_{2.00}Al_{3.69}(Si_{6.75}Al_{1.25})O_{20}(OH)_4$. The calculated formula of muscovite slightly low in Al content can be considered to be reasonable in general when the low content of Al in the rock and the uncertainties of chlorite compositions used in the calculation are counted. This supports that the method of separation proposed in this study is also applicable.