• 제목/요약/키워드: Jib Crane

검색결과 23건 처리시간 0.02초

러핑각도에 따른 선박용 지브크레인의 구조 안정성 평가 (Evaluation of Structural Stability of JIB Crane for a Feed Vessel According to the Luffing Angle)

  • 이문제;한동섭;한근조
    • 동력기계공학회지
    • /
    • 제12권6호
    • /
    • pp.24-28
    • /
    • 2008
  • It expects demand of ships which equipped with JIB crane growth to continue. However, demand of JIB crane is increased, domestic shipment company imitated the design of Europe and Japan. And we need to develop the functional system of the JIB crane and modernize it. We need to find the optimum luffing angle for saving energy when JIB crane works. This study analyzed buckling load of JIB and reaction force of support point and stress of JIB according to the luffing angle through finite element analysis when JIB crane loads 40 ton weight. And this study considered the safety factor 1.8 of material. Every design condition was KS A1627 standard. This study used ANSYS 10.0.

  • PDF

선박용 갑판크레인의 지브의 경량화설계 (Weight Reduction Design for a JIB of Deck Crane for Shipment)

  • 한동섭;이문재;한근조
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.396-400
    • /
    • 2009
  • The demand of JIB crane to handle a container or a bulk in a vessel is increasingly because of the growth of the scale of trade through the sea. This deck crane such as JIB crane is required the weight reduction design because it is installed in the deck of a vessel due to the environment regulation. In this study first we carry out the structural analysis of JIB with respect to the luffing angle of it to calculate the maximum equivalent stress of JIB, and next the optimum design for the weight reduction design of JIB. The thickness in a cross section of JIB is adopted as the design variable, the weight of JIB as the objective function, and the von mises stress as the constraint condition for the optimum design of JIB using the ANSYS 10.0.

이중 링크 형식 수평 인입 집 크레인의 링크 구성 설계에 관한 연구(II) (A study on the link composition design of a double link type level luffing jib crane (II))

  • 허철원;최명수;문덕홍
    • 동력기계공학회지
    • /
    • 제15권1호
    • /
    • pp.57-63
    • /
    • 2011
  • It is very important to determine link composition of a crane in the basic design of the crane. There are many parameters in the design for the link composition of a double link type level luffing jib crane. We analyze the variation of link composition according to the variation of these parameters which are the angle of fixed link, the angle between the fixed link and backstay when the position of the crane is the maximum working radius, the ratio of fly jib length between two moving hinges to the total length of fly jib, the length of backstay, and the slewing radius. In this paper, we describe the application of the previous analysis program of the link composition design for a double link type level luffing jib crane.

JIB크레인의 Constant-level luffing과 시간최적제어 (Constant-level luffing and time optimal control of a JIB crane)

  • 최경배;홍금식;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1788-1791
    • /
    • 1997
  • In this paper constant-level luffing and time optimal control of a JIB crane is investigated. The crane is assumed to have only the derricking motion. the analysis of plance kinematics provides the relationship between the boom angle and the main hosit motor angle for constant-level luffing. The dynamic equations for the crane are very nonlimear, and therefore they are linearized for the application of the linear control theory. The time optimal control in the perspective of no-sway at the end of boom stroke is investigated.

  • PDF

이중 링크 형식 수평 인입 집 크레인의 링크 구성 설계에 관한 연구( I ) (A Study on the Link Composition Design of a Double Link Type Level Luffing Jib Crane (I))

  • 문덕홍;허철원;최명수
    • 동력기계공학회지
    • /
    • 제13권1호
    • /
    • pp.19-25
    • /
    • 2009
  • This paper is a study on the link composition design of a double link type level luffing jib crane using path generation synthesis passing through three precision points according to parameters, the length of backstay, the ratio of fly jib length between two moving hinges to the total length of fly jib, the location of a intermediate passing point etc. when the maximum and minimum working radius of the crane are given. The performance of the crane depends on the deviation of the luffing trajectory at fly jib tip. The luffing trajectories according to the above parameters are analyzed and shown in graphs by the developed computer program. In a real-life design, some trials are needed to arrive at a proper link composition design. Therefore, it is expected that the present computer program can rapidly and exactly deal with a link composition design proper to the design criteria of the crane.

  • PDF

시간최적제어를 이용한 지비크레인의 흔들림제어 (Anti-Sway Control of a Jib Crane Using Time Optimal Control)

  • 강민우;홍금식
    • 한국해양공학회지
    • /
    • 제19권1호
    • /
    • pp.87-94
    • /
    • 2005
  • This paper investigates the constant-level luffing and time optimal control of jib cranes. The constant-level luffing, which is the sustainment of the load at a constant height during luffing, is achieved by analyzing the kinematic relationship between the angular displacement of a boom and that of the main hoist motor of a jib crane. Under the assumption that the main body of the crane does not rotate, the equations of motion of the boom are derived using Newton's Second Law. The dynamic equations for the crane system are highly nonlinear; therefore, they are linearized under the small angular motion of the load to apply linear control theory. This paper investigates the time optimal control from the perspective of no-sway at a target point. A stepped velocity pattern is used to design the moving path of the jib crane. Simulation results demonstrate the effectiveness of the time optimal control, in terms of anti-sway motion of the load, while luffing the crane.

Analytical method for the out-of-plane buckling of the jib system with middle strut

  • Wang, T.F.;Lu, N.L.;Lan, P.
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.963-980
    • /
    • 2016
  • The jib system with middle strut is widely used to achieve the large arm length in the large scale tower crane and the deployability in the mobile construction crane. In this paper, an analytical solution for the out-of-plane buckling of the jib system with middle strut is proposed. To obtain the analytical expression of the buckling characteristic equation, the method of differential equation was adopted by establishing the bending and torsional differential equation of the jib system under the instability critical state. Compared with the numerical solutions of the finite element software ANSYS, the analytical results in this work agree well with them. Therefore, the correctness of the results in this work can be confirmed. Then the influences of the lateral stiffness of the cable fixed joint, the dip angle of the strut, the inertia moment of the strut, and the horizontal position of the cable fixed joint on the out-of-plane buckling behavior of the jib system were investigated.

타워크레인의 용접부 비파괴검사 데이터 기반 취약부위 분석 (Analysis of Vulnerable Parts based on Non-destructive Testing Data of Tower Crane Welding Parts)

  • 정성모;임재용
    • 자동차안전학회지
    • /
    • 제13권2호
    • /
    • pp.50-56
    • /
    • 2021
  • The purpose of this study is to investigate vulnerable parts of tower crane structures by analyzing extensive non-destructive test data. Approximately ten percent of domestically registered tower cranes were inspected by using magnetic particle inspection. The testing was carried out as advised in KS B 0213. The non-destructive results was analyzed with respect to jib types, age and crane size. As a result, the number of crack occurrences were the largest in mast parts, followed by main jib part. Moreover, it was found that turntables were important parts deserved to be noticed at the perspective of safe maintenance.

하중을 받는 타워크레인의 구조 안전성 해석 (Analysis on the Structural Safety of the Tower Crane under Load)

  • 조재웅;김세환
    • 한국산학기술학회논문지
    • /
    • 제11권10호
    • /
    • pp.3641-3646
    • /
    • 2010
  • 본 연구에서는 타워크레인의 지브 끝에 하중을 주고 마스트에 모멘트를 주어 그에 따른 변형 해석을 수행하여 다음과 같은 해석 결과를 보았다. 지브를 지지하고 있는 와이어의 끝 부분에서 응력이나 변형이 가장 많이 일어남을 알 수 있었고 하중이 작용하는 지브의 끝 부분에서 변형이 많이 일어나고 마스트 밑 부분은 변형이 없는 것으로 나타났다. 또한 마스트의 윗부분에서 가장 수명이 짧아져서 가장 취약함을 알 수 있었다. 이러한 크레인의 구조 해석결과를 통하여 그 안전 설계 및 내구성을 향상할 수 있다고 사료된다.