• Title/Summary/Keyword: Jetting performance

Search Result 42, Processing Time 0.048 seconds

An Experimental Study on Sealing Performance Improvement for Oil Mist Luibrication Environment (오일 미스트 윤활환경의 밀봉성능향상을 위한 실험적 연구)

  • 나병철;전경진;한동철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.76-82
    • /
    • 1998
  • Sealing an oil-air mixture plays important roles to have an enhanced lubrication for high speed spindle. Current work is emphasized on the investigation of the air jet effect on the protective collar type labyrinth seal. To improve the sealing capability of conventional labyrinth seal, air jet is injected against through the leakage flow. It has a combined geometry of a protective collar type and an air jet type. In this study, both of a numerical analysis by CFD(Computational Fluid Dynamics) and experimental measurements are carried out to verify sealing improvement. Both of the turbulence and the compressible flow model are introduced in CFD analysis. The sealing effect of the leakage clearance and the air jet magnitude are studied for various parameter in the experiment. The results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient. Effects of sealing improvement are explained as decreasing of effective leakage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance becomes larger.

  • PDF

An Experimental Study of Performance Improvement for Protective Collar Type Labyrinth Seal (프로택트 컬러타입 리비린스 시일의 성능개선에 관한 실험적 연구)

  • 나병철;전경진;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.625-629
    • /
    • 1997
  • Sealing an oil-air mixture plays important roles to have an enhanced lubrication for high speed spindele. Current work was emphased on the investigation of air jet effect on the protective collar type labyrinth seal. To improve the sealing capability of conventional labyrinth seal,ari jet was injected against through the leakage flow. It has a combined geometry of a protective collar type and an air jet type. In this study, both of a numerical analysis by CFD (Computational Fluid Dynamics) and experimental measureements are carried out of verify sealing improvement. But of the turbulence and the compressible flow model were introduced in CFD analysis. The sealing effect of the leakage clearance and the air jet magnitude were studied for variousparameter in the experiment. The results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient. Effects of sealing improvement are explained as decreasing of effective leckage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance become larger.

  • PDF

A Study on the Control System for Piezoelectric Inkjet Head (압전 잉크젯 프린터 헤드 제어에 관한 연구)

  • Lee, Dal-Ho;Han, Hyung-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.1
    • /
    • pp.30-35
    • /
    • 2009
  • In this paper, the type of inkjet heads and the control of head of inkjet printer are surveyed. The electronic parts of inkjet printer are composed of main- board and sub-board. The inkjet head is controlled by using these boards. The results from silver ink jetting experiment are given. The results show that the implemented inkjet system can give a satisfactory performance.

  • PDF

The Air Jet Effect of Sealing Performance Improvement on Labyrinth Seal (공기분사가 라비린스 시일의 성능개선에 미치는 영향)

  • 나병철;전경진;한동철
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.35-42
    • /
    • 1996
  • The labyrinth seal is one of the widely used non-contact type mechanical seal. Current work was emphasized on the investigation of the air jet effect on the labyrinth seal. To improve the sealing capability of conventional labyrinth seal, air jet was injected against through the leakage flow. In this study, both of the numerical analysis by CFD (Computational Fluid Dynamics) and the experimental measurement were carried out. Both of the turbulence aad the compressible flow model were introduced in CFD analysis. The sealing effect of the leakage clearance and the air jet magnitude were studied in the experiment. The reason of the enhanced sealing was explained as a reduction of effective clearance by jetting air. As a result, the air jet could reduce the effective clearance with a wide range of leakage clearance.

Contact resistance extraction between Ink-jet printed PEDOT-PSS and Pentacene in OTFTs

  • Kim, Myung-Kyu;Kang, Rae-Wook;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.654-656
    • /
    • 2008
  • We enhanced the conductivity of PEDOT-PSS by mixing with glycerol and fabricated the low contact resistance of source and drain[S/D] electrodes of OTFT with PEDOT-PSS by ink-jetting printing. The contact resistance was much smaller by seven times than Au with $200k{\Omega}$ at $V_G=-5V$. For the bottom contacted OTFTs, the performance was comparable to OTFTs with Au electrodes with the field effect mobility of $0.2\;cm^2/V s$.

  • PDF

The droplet movement on the super-hydrophobic surface by the electro-wetting on dielectric and the effect of particles (EWOD(Electro-Wetting on Dielectric)에 의한 초소수성 표면에서의 액적 이동과 부유물의 영향)

  • Byun, Do-Young;Lee, Young-Jong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.297-300
    • /
    • 2006
  • This article discusses about the droplet movement on the super-hydrophobic surface by the electro-wetting on dielectric and the effect of particles on the contact angle as well as the movement is investigated. The movement of droplet, driven by the principle of electro-wetting on dielectric, and the effect of particles are experimentally verified according to the driving voltage and different particles concentrations (fluorescent, charged particles). To increase the contact angle, the super-hydrophobic surface is fabricated and applied to the dielectric layer for the EWOD device. Then its performance is verified and discussed.

  • PDF

Heating type of die surface for removing weld line using high temperature air jet (웰드라인 제거를 위한 고온 기체 분사를 이용한 금형 표면의 가열기법)

  • Kim, Gyeong-Ha;Kim, Sun-Gyeong;Yu, Yeong-Eun;Jea, Tae-Jin;Choi, Du-Seon
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.10-14
    • /
    • 2008
  • The application range of injection molded parts is expanding by the development of engineering plastics with good mechanical properties. Plastic products are specially used as automotive parts due to an excellent performance in the characteristics of a strength vs. weight. In this study, heating type of new method such as jet injection was applied to improve heat transfer coefficient is substituted for heating method of injection molding.

  • PDF

Fabrication of soluble organic thin film transistor with ammonia ($NH_3$) plasma treatment

  • Kim, Dong-Woo;Kim, Doo-Hyun;Kim, Keon-Soo;Kim, Hyoung-Jin;Choi, Hong;Lee, Dong-Hyeok;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.566-567
    • /
    • 2009
  • We have examined the silicon nitride ($SiN_x$) as gate insulator with the ammonia ($NH_3$) plamsa treatment for the soluble derivatives of polythiophene as p-type channel materials of organic thin film transistors (OTFTs). Fabrications of the jetting-processed OTFTs with $SiN_x$ as gate insulator by $NH_3$ plasma treatment can be similar to performance of OTFTs with silicon dioxide ($SiO_2$) insulator.

  • PDF

Development of Electrospray Micro Thruster with Super-Hydrophobic PTFE Surface Nozzle Treated by Ar and Oxygen Ion Beam

  • Lee, Y.J.;Byun, D.Y.;Si, Bui Quang Tran;Kim, S.H.;Park, B.H.;Yu, M.J.;Kim, M.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.877-880
    • /
    • 2008
  • In this article, in order to fabricate polymer based electrospray device with super hydrophobic nozzle we use PTFE(polyfluorotetraethylene) plate and PMMA(polymethylmethacrylate). To obtain the super hydrophobic surface nozzle, PTFE surface is treated by argon and oxygen plasma treatment process. And evaluate the treated surface, perform measuring contact angle, SEM(Scanning Electron Microscope) and AFM(Atomic Force Microscope). We compare the performance of the super hydrophobic PTFE surface nozzle with raw PTFE and PMMA surface nozzle. For the ion beam treated PTFE nozzle, the liquid doesn't overflow and it keeps initial position and meniscus shape. From these results, we expect in cease of superhydrophobic surface nozzle jetting becomes more stable and repeatable.

  • PDF

3D Printing-Based Ultrafast Mixing and Injecting Systems for Time-Resolved Serial Femtosecond Crystallography (시간 분해 직렬 펨토초 결정학을 위한 3차원 프린팅 기반의 초고속 믹싱 및 인젝팅 시스템)

  • Ji, Inseo;Kang, Jeon-Woong;Kim, Taeyung;Kang, Min Seo;Kwon, Sun Beom;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.300-307
    • /
    • 2022
  • Time-resolved serial femtosecond crystallography (TR-SFX) is a powerful technique for determining temporal variations in the structural properties of biomacromolecules on ultra-short time scales without causing structure damage by employing femtosecond X-ray laser pulses generated by an X-ray free electron laser (XFEL). The mixing rate of reactants and biomolecule samples, as well as the hit rate between crystal samples and x-ray pulses, are critical factors determining TR-SFX performance, such as accurate image acquisition and efficient sample consumption. We here develop two distinct sample delivery systems that enable ultra-fast mixing and on-demand droplet injecting via pneumatic application with a square pulse signal. The first strategy relies on inertial mixing, which is caused by the high-speed collision and subsequent coalescence of droplets ejected through a double nozzle, while the second relies on on-demand pneumatic jetting embedded with a 3D-printed micromixer. First, the colliding behaviors of the droplets ejected through the double nozzle, as well as the inertial mixing within the coalesced droplets, are investigated experimentally and numerically. The mixing performance of the pneumatic jetting system with an integrated micromixer is then evaluated by using similar approaches. The sample delivery system devised in this work is very valuable for three-dimensional biomolecular structure analysis, which is critical for elucidating the mechanisms by which certain proteins cause disease, as well as searching for antibody drugs and new drug candidates.