• Title/Summary/Keyword: Jet impinging

Search Result 441, Processing Time 0.022 seconds

Development of Stereoscopic PTV Technique and Performance Tests (Stereoscopic PTV 기법의 개발과 성능비교 연구)

  • Lee Sang-Joon;Yoon Jong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.215-221
    • /
    • 2006
  • A stereoscopic particle tracking velocimetry (SPTV) technique based on the 2-frame hybrid particle tracking velocimetry (PTV) method was developed. The expansion of 2D PTV to SPTV is facilitated by the fact that the PTV method tracks individual particle centroids. To evaluate the performance and measurement accuracy of the present SPTV technique, it was applied to flow images of rigid body translation and synthetic standard images of jet shear flow and impinging jet flow. The data processing routine and measurement uncertainty of the SPTV technique are compared with those of conventional stereoscopic particle image velecimet.y (SPBV). In addition, the centroid translation effect of 2D particle image velocimetry (PIV) is defined and its effect on SPIV measurements is discussed. Compared to the SPIV method, the SPTV technique has inherited merits of concise and precise velocity evaluation procedures and provides better spatial resolution and measurement accuracy.

Jet Impingement Heat Transfer on a Cylindrical Pedestal Encountered in Chip Cooling (충돌제트를 이용한 Pedestal 형상의 칩 냉각연구)

  • Lee, Dae-Hee;Lee, Joon-Sik;Chung, Young-Suk;Chung, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The heat transfer and flow measurements on a cylindrical pedestal mounted on a flat surface with a turbulent impinging jet were made. The experiments were made for the jet Reynolds number of Re = 23,000, the dimensionless nozzle-to-surface distance of L/d = 2~10, the dimensionless pedestal height of H/D = 0~1.5. Measurements of the surface temperature and the Nusselt number distributions on the plate surface were made using liquid crystal and shroud-transient technique. Flow measurements involve smoke flow visualization and the wall pressure coefficient. The results show that the wall pressure coefficient sharply decreases along the upper surface of the pedestal. However, the pressure increases when the fluid escapes from the pedestal and then collides on the plate surface. The secondary maxima in the Nusselt numbers occur in the region of 1.0 $\leq$ r/d $\leq$ 1.9. Their values for the case of H/D = 0.5 are maximum 80% higher than those for other cases. The formation of the secondary maxima may be attributed to the reattachment of flow on the plate surface which was separated at the edge of the pedestal.

Heat/Mass Transfer Characteristics for Variation of Injection Hole in Rotating Impingement/Effusion Cooling System (회전하는 충돌제트/유출냉각기법에서 분사홀 변화에 따른 열/물질전달 특성)

  • Hong, Sung-Kook;Cho, Hyung-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.25-32
    • /
    • 2007
  • The present paper deals with the heat/mass transfer characteristics for the rotating impingement/effusion cooling system. By changing the size and number of injection hole, its effects on heat/mass transfer are investigated and three different injection hole cases are considered such as LH, DH and SH, respectively. Reynolds number based on the effusion hole diameter is fixed to 3,330 and two jet orientations are considered. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. The LH case shows that the local heat/mass transfer is significantly varied by the rotation. Moreover, the low and non-uniform Sh distributions occur because the impinging jet is deflected by Coriolis force. Meanwhile, for DH and SH cases, the local heat/mass transfer coefficients are enhanced significantly compared to LH case and the rotation effect decreases with increasing the jet velocity. The averaged Sh value of DH and SH case rises up to 45%, 85% than that of LH case. However, the uniformity of heat/mass transfer deteriorates due to the steep variation of heat/mass transfer.

Jet Impingement Heat Transfer on a Pedestal Encountered in Chip Cooling (충돌제트를 이용한 pedestal 형상의 칩 냉각연구)

  • Lee, Dae-Hee;Chung, Seung-Hoon;Chung, Young-Suk;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.124-130
    • /
    • 2001
  • The heat transfer and flow measurements were made on a cylindrical pedestal mounted on a flat plate with a turbulent impinging air jet. The heat transfer coefficient distributions on the flat plate were measured using the shroud-transient technique and liquid crystal was used to measure the surface temperature. The jet Reynolds number (Re) is 23,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, the dimensionless pedestal diameter-to-height (H/D) from 0 to 1.5, the dimensionless 2nd pedestal diameter-to-height ($H/D_2$) from 0 to 0.4 and the distance from the stagnation point to 2nd pedestal (p/D). The results show that for H/D = 0.5 to 1.5, the Nusselt number distributions on the plate surface exhibit a maximum between $r/d\;{\cong}\;1.0$ and 1.5. The presence of the pedestal appears to cause the flow separation and reattachment on the plate surface, which results in the maximum heal transfer coefficient. Also, for p/D = 2.5 and $H/D_2$ = 0.3, the local Nusselt number in the region corresponding to $r/d\;{\cong}\;1.1$ was increased up to 50% compared to that for $H/D_2=0$.

  • PDF

Study of Effects of the Boundary Layer of Micro-Supersonic Jets on the Flow Impingments in Laser Machining (마이크로 초음속 제트 경계층이 레이저가공에서 나타나는 충돌유동에 미치는 영향에 관한 연구)

  • Yu, Dong-Ok;Lee, Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.285-288
    • /
    • 2007
  • Numerical study of the influence of the boundary layer of micro-supersonic jet impinging on a flat plate with a hole was performed, to investigate the role of gas jet to eject melted materials from the cut zone in the laser machining. The detailed shock structures and the information of the mass flow rate through the hole were compared to the results of the previous study, in which the effects of boundary layer inside nozzle was not accounted. It was found that the boundary layer inside the micro- nozzle introduced stronger Mach disc over the machining zone, and thus that the mass flow rate through the hole decreased.

  • PDF

Thermal and flow characteristics of confined multiple slot jet impingement with exhaust ports (배기구를 가진 국한된 다중 슬롯 충돌제트의 열유동 특성)

  • Kang, Soo-Jin;Cho, Woo-Jin;Lee, Jong-Hyeok;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.835-840
    • /
    • 2009
  • In this paper, confined multiple slot jet impingement with exhaust ports is investigated numerically. A flow cell, defined as volume sectioned by the impingement and confinement surfaces and the centerlines of adjacent nozzle and exhaust port, is chosen for computational domain. The effects of Reynolds number and geometrical parameters on the heat transfer performance and the flow characteristics are studied. For turbulence, the Abe-Kondoh-Nagano version of the low-Reynolds k-$\varepsilon$ model is employed. The results showed that the local Nusselt number distribution is shifted down and show poor heat transfer performance for small Reynolds number and small ratio of the lateral and axial length of flow cell. The rest of range, except the range of the shift phenomenon, can be classified into three groups by heat transfer characteristics.

  • PDF

Augmentation of Heat Transfer for Circular Water Jet Impinging on a Cylindrical Inner Surface (충돌수분류(衝突水噴流)에 의한 원통내면(圓筒內面)에서의 열전달증진(熱傳達增進)에 관한 연구(硏究))

  • Ohm, K.C.;Woo, C.K.;Choi, G.G.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.279-287
    • /
    • 1990
  • An experimental study of the heat transfer characteristics between circular water jet and cylindrical inner surface is presented. The ratios of the semi-cylinder's inner diameter and the nozzle outlet diameter were varied parametrically, as were the Reynolds number and the supplementary water heights. The measurements showed that cirucmferential distribution of the heat transfer coefficient peaked at the stagnation point and, there occurred a kind of a secondary maximum of heat transfer that moved toward to stagnation point as the ratio d/D increased. The local heat transfer coefficient increases as the Reynolds number becomes larger, and the rate of increase is subjected to the influence of d/D & position of angle. Also, optimum heights of supplementary water which brings about the augmentation of heat transfer are S/D=1 for the stagnation point, the position of $15^{\circ}$ & $30^{\circ}$ angle, but for the positions of $45^{\circ}$ angle (d/D=10~11.67), $60^{\circ}$ & $75^{\circ}$ angle, the heat transfer coefficients in the case of using supplementary water are smaller than simple jet (S/D=0).

  • PDF

Phase criterion of the feedback cycle of edgetones (쐐기소리의 되먹임 사이클의 위상조건)

  • Gwon, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1106-1113
    • /
    • 1996
  • The phase criterion of the feedback cycle of low-speed edgetones has been obtained using the jet-edge interaction model which is based on the substitution of an array of dipoles for the reaction of the wedge to the impinging jet. The edgetone is produced by the feedback loop between the downstream-convected sinuous disturbance and upstream-propagating waves generated by the impingement of the disturbance on the wedge. By estimation of the phase difference between the downstream and the upstream disturbances, the relationship between the edge distance and the wavelength is obtained according to the phase-locking condition at the nozzle lip. With a little variation depending on the characteristics of jet-edge interaction, the criterion can be approximated as follows: h/.LAMBDA. + h/.lambda. = n - 1/4, where h is the stand-off distance between the nozzle lip and the edge tip, .LAMBDA. is the wavelength of downstream-convected wave, .lambda. is the wavelength of the upstream-propagating acoustic wave and n is the stage number for the ladder-like characteristics of frequency. The present criterion has been confirmed by estimating wavelengths from available experimental data and investigating their appropriateness. The above criterion has been found to be effective up to 90.deg. of wedge angle corresponding to the cavitytones.

Study of the Shock Structure of Supersonic, Dual, Coaxial, Jets (초음속 이중 동축 제트유동에서 발생하는 충격파 구조에 관한 연구)

  • 이권희;이준희;김희동;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.94-101
    • /
    • 2001
  • The shock structure of dual coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure on the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number 2.0 and 3.0 are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 1.0 and 10.0, and the assistant jet ratio from 1.0 to 4.0. The results show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter.

  • PDF

Study on Local Thermal Equilibrium in a Porous Medium (다공성 매질에서 Local Thermal Equilibrium에 관한 연구)

  • Jang, Seok-Pil;Kim, Seong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1172-1182
    • /
    • 2002
  • In the present study a general criterion for local thermal equilibrium is presented in terms of parameters of engineering importance which include the Darcy number, the effective Prandtl number of fluid, and the Reynolds number. For this, an order of magnitude analysis is performed for the case when the effect of convection heat transfer is dominant in a porous structure. The criterion proposed in this study is more general than the previous criterion suggested by Carbonell and Whitaker, because the latter is applicable only when conduction is the dominant heat transfer mode in a porous medium while the former can be applied even when convection heat transfer prevails. In order to check the validity of the proposed criterion for local thermal equilibrium, the forced convection phenomena in a porous medium with a microchanneled structure subject to an impinging jet are studied using a similarity transformation. The proposed criterion is also validated with the existing experimental and numerical results for convection heat transfer in various porous materials that include some of the parameters used in the criterion such as a microchannel heat sink with a parallel flow, a packed bed, a cellular ceramic, and a sintered metal. It is shown that the criterion presented in this work well-predicts the validity of the assumption of local thermal equilibrium in a porous medium.