• Title/Summary/Keyword: Jet condenser

Search Result 7, Processing Time 0.024 seconds

Study on Cooling Charcteristics of Forced Evaporation by using Steam Ejector (스팀 에젝터에 의한 강제 증발 방식의 냉각 특성에 관한 연구)

  • Son, H.J.;Lee, Y.H.;Kim, Y.G.;Jeong, H.M
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.41-46
    • /
    • 2006
  • This study shows a water cooling system by using a steam ejector and jet condenser to drop the temperature of the water by about $5^{\circ}C\;from\;25^{\circ}C$ or higher. In this research, to replace the present water cooling system, we focused on a water cooling system by latent heat of evaporation, thus this system needs a vacuum pressure to evaporate the water in enclosed tank. The water cooling effects are depended on the vacuum pressure in the enclosed tank, and the cooling water is generated by latent head of evaporation. As the experimental results, the absolute vacuum pressure obtained was about $5{\sim}8$ mmHg using a steam driven ejector with jet condenser.

  • PDF

A Study on the Comparison of Design Conditions between Booster Ejector and Air Ejector in the Steam-Jet Water-Vapour Refrigeration Cycle (증기분사냉동계의 부우스터 이젝터와 에어 이젝터의 설계조건비교에 관한 연구)

  • Lee, Chang-Sik
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.7 no.2
    • /
    • pp.73-79
    • /
    • 1978
  • This paper presents the experimental study on the design conditions of pressure between booster ejector and air ejector in the steam-jet water-vapour refrigeration system. In this experiment, the motive steam of booster ejector and ai. ejector was dry saturated from 6 ata to 8 ata and flash chamber pressure were about $10\∼540mmHg$ higher than mixing section in booster ejector. The investigation of air on the pressure of booster ejector was performed by changing the condenser pressure. The experimental results show that flash chamber vacuum and condenser pressure of steam-jet refrigeration cycle increased in accordance with the increase of motive steam Pressure. Among the several nozzle sires tested, No.4 nozzle were best in term of evaporator vacuum under the constant operating conditions of air ejector in condenser.

  • PDF

Numerical Analysis on the Flow Characteristics in Steam Ejector

  • Shin, You-Sik;Jin, Zhen-Hua;Chun, You-Sin;Lee, Sang-Chul;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.749-754
    • /
    • 2006
  • This study performed of a water cooling system by using a steam ejector and jet condenser to drop the temperature of the water in aquafarm by about $5^{\circ}C$ from $25^{\circ}C$ or higher in this research, to replace the present water cooling system, Ive focused on a water cooling system operated by latent heat of evaporation, thus this system needs a vacuum pressure to evaporate the water in enclosed tank. The water cooling effects are dependent on the vacuum pressure in the enclosed tank, and the cooling water is generated by evaporation. As the experimental results, the absolute vacuum pressure obtained was about $5{\sim}8mmHg$ using a steam driven ejector with jet condenser in experiments. The obtained results are respectively ${\Delta}T=7^{\circ}C$, ${\Delta}T=5^{\circ}C$ and ${\Delta}T=5.5^{\circ}C$ at heat exchanger flow rate 4L/M. The obtained results are respectively ${\Delta}T=5.5^{\circ}C$, ${\Delta}T=5.5^{\circ}C$ and ${\Delta}T=5.5^{\circ}C$ at heat exchanger flow rate 4.5L/M.

  • PDF

The Experimental Research On The Electrical Characteristics For The Ignition Of Plasma Jet Using The Advance Discharge Of High Frequency Voltage With Attenuation (감쇠파 고주파전압의 선행방전을 이용한 Plasma jet의 전기적 기동특성에 대한 실험적 연구)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • v.21 no.4
    • /
    • pp.27-38
    • /
    • 1972
  • This paper discusses the characteristics about the ignition of D.C. main discharge is a plasma jet generator, manufactured for trial as non-transferred type, when the electrical energy appropriate to the ignition is supplied to the gap between the electrodes by using advance discharge of attenuating high frequency voltage generated by a high frequency oscillator with mercury spark gap. These characteristics are under the influences of (a) the length of mercury gap in high frequency oscillator and the quantity of hydrogen flow supplied to it, (b) the condenser capacity of the high frequency oscillator circuit, (c) the length of plasma jet torch in D.C. main discharge circuit and the quantity of argon flow supplied to it, (d) the circuit constants of D.C. main discharge circuit. The results for these characteristics, obtained by this research, are considered to be helpful to the designs for the ignition of a plasma jet as well as the welding arc stabilizer by high frequency discharge and the high frequency arc welder.

  • PDF

A Study on the Operating Characteristics of Commercial Frequency Plasma Jet Torch (상용 주파수 (60Hz) Plasma Jet Torch의 동작특성에 관한 연구)

  • 전춘생;정재웅
    • 전기의세계
    • /
    • v.24 no.1
    • /
    • pp.75-85
    • /
    • 1975
  • In order to develop the commercial frequency (60Hz) plasma torch of small capacity for material cutting, welding and other industrial heating, the A.C plasma jet generator of non-transfered type is made domestically and the electrode configurations of plasma torch are composed of two kinds of electrodes W-C and W-Cu, combined by thermal emission and field emission electrode materials. In this paper, the characteristics of input power, thermal efficiency, electrode consumption, the flame and forms of arc voltage and arc current for A.C plasma torch are investigated in relation to such variables as arc current, argon flow and magnetic field intensity to obtain the basic design data necessary to A.C plasma jet generator. The result are as follows; (1)The input power, thermal efficiency and electrode consumption are influenced greatly by argon flow, magnetic field intensity and nozzle materials. (2)A.C arc voltage and current are non-symmetrial, involving D.C Component. Due to this current of D.C Component, transformer core is saturated and a large abnormal current flows into the primary winding coil. In order to prevent this abnormal current flow, a condenser must be connected in series to the main discharge circuit. (3)The stability and sharpness of jet flame are improved more in the torch of W-C electrode configuration than in the torch of W-Cu electrode configuration.

  • PDF

A Study on the Diffuser Inlet Shape of Thermocompressor for MED Desalination Plant (다중효용 담수설비용 열압축기의 디퓨져 입구부 형상에 관한 연구)

  • Jin, Chang-Fu;Song, Young-Ho;Kim, Kyung-Keun;Park, Gi-Tae;Chung, Han-Shik;Choi, Du-Youl
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.869-876
    • /
    • 2008
  • A thermocompressor is the equipment which compresses a vapor to a desired discharge pressure. Since it was first used as the evacuation pump for a surface condenser, it has been widely adopted for energy saving systems due to its high working confidence. In the present study, the geometrical analysis of the shape between the jet nozzle and the diffuser inlet, the drag force was calculated by means of the integrated equation of motion and the computational fluid dynamic (CFD) package called FLUENT. The computer simulations were performed to investigate the effects by the various suction flow rates, the distance from jet nozzle outlet to the diffuser inlet and the dimensions of the diffuser inlet section through the iterative calculation. In addition, the results from the CFD analysis on the thermocompressor and the experiments were compared for the verification of the CFD results. In the case of a jet nozzle, the results from the CFD analysis showed a good agreement with the experimental results. Furthermore, in this study, a special attention was paid on the performance of the thermocompressor by varying the diffuser convergence angle of $0.0^{\circ}$, $0.5^{\circ}$, $1.0^{\circ}$, $2.0^{\circ}$, $3.5^{\circ}$ and $4.5^{\circ}$. With the increase of the diffuser convergence angle. the suction capacity was improved up to the degree of $1.0^{\circ}$ while it was decreased over the degree of $1.0^{\circ}$.

Investigation of Hydraulic Flow Properties around the Mouths of Deep Intake and Discharge Structures at Nuclear Power Plant by Numerical Model (수치모의를 통한 원자력 발전소 심층 취·배수 구조물 유·출입구 주변에서의 수리학적 흐름특성 고찰)

  • Lee, Sang Hwa;Yi, Sung Myeon;Park, Byong Jun;Lee, Han Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.123-130
    • /
    • 2012
  • A cooling system is indispensable for the fossil and nuclear power plants which produce electricity by rotating the turbines with hot steam. A cycle of the typical cooling system includes pumping of seawater at the intake pump house, exchange of heat at the condenser, and discharge of hot water to the sea. The cooling type of the nuclear power plants in Korea recently evolves from the conventional surface intake/discharge systems to the submerged intake/discharge systems that minimize effectively an intake temperature rise of the existing plants and that are beneficial to the marine environment by reducing the high temperature region with an intensive dilution due to a high velocity jet and density differential at the mixing zone. It is highly anticipated that the future nuclear power plants in Korea will accommodate the submerged cooling system in credit of supplying the lower temperature water in the summer season. This study investigates the approach flow patterns at the velocity caps and discharge flow patterns from diffusers using the 3-D computational fluid dynamics code of $FLOW-3D^{(R)}$. The approach flow test has been conducted at the velocity caps with and without a cap. The discharge flow from the diffuser was simulated for the single-port diffuser and multi-ports diffuser. The flow characteristics to the velocity cap with a cap demonstrate that fish entrainment can significantly be minimized on account of the low vertical flow component around the cap. The flow pattern around the diffuser is well agreed with the schematic diagram by Jirka and Harleman.