• 제목/요약/키워드: Jet Stream

검색결과 186건 처리시간 0.029초

연료노즐 내부유동 현상의 수치해석 (Calculation of the internal flow in a fuel nozzle)

  • 구자예;박장혁;오두석;정홍철
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.1971-1982
    • /
    • 1996
  • The breakup of liquid jet is the result of competing, unstable hydrodynamic forces acting on the liquid jet as it exit the nozzle. The nozzle geometry and up-stream injection conditions affect the characteristics of flow inside the nozzle, such as turbulence and cavitation bubbles. A set of calculation of the internal flow in a single hole type nozzle were performed using a two dimensional flow simulation under different nozzle geometry and up-stream flow conditions. The calculation showed that the turbulent intensity and discharge coefficient are related to needle position. The diesel nozzle with sharp inlet under actual engine condition has possibility of cavitation, but round inlet nozzle has no possibility of cavitation.

450自由衝突 噴射 의 亂流流動 에 관한 實驗的 硏究 (An Experimental Study on the Turbulent Flow of a 45$^{\circ}C$ Free Cross Jet)

  • 노병준;김장권
    • 대한기계학회논문집
    • /
    • 제8권5호
    • /
    • pp.442-449
    • /
    • 1984
  • 본 연구에서는 두 분류가 교우되어 배합이 이루어지는 유동역에서 3차원 방향 에 대하여 평균속도분포, 난류강도분포, 난류전단응력분포, 상관계수의 분포 및 난류 운동에너지와 운동량의 변화 등을 측정 분석하였다.

초음속 역분사 유동이 초음속 비행체 성능에 미치는 영향에 대한 수치해석적 연구 (A Numerical Analysis of Supersonic Counter Jet Flow Effect on Performance of a Supersonic Blunt-Body)

  • 서덕교;서정일;송동주
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.1-8
    • /
    • 2002
  • The counter jet flow which is injected against the free stream at stagnation region of blunt body for improvement of aerodynamic performance has been studied by using upwind Navier-Stokes method. The variations of drag force and upwind forward penetration depth due to changes in the stagnation thermodynamic properties of counter jet flow such as total pressure, Mach number, and total temperature have been studied. The results show that the changes in the stagnation pressure and Mach number have large effects on the wall pressure and drag force, but the total temperature does not affect the wall pressure and drag force.

Comparison of the Side-Jets and Rear-Jet Effects on the Controllability of Flow-Induced Vibrations

  • HONG Jun-Ho;ARAI Norio
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.164-165
    • /
    • 2003
  • The problem of a bluff body oscillating in a fluid flow has been receiving a great deal of attention. When a bluff body is placed in a flow, it experiences fluctuating hydraulic forces in both transverse and stream-wise directions. It is caused by the formation of vortices behind the body, which could cause large damages of structures. It is called the flow-induced vibrations. In this article, it is investigated the effects of that side-jets and rear-jet, which is applied to control the vortex shedding. The rear-jet is available to control the flow-induced vibrations according as the body shapes and the velocity of fluid flow in which the galloping phenomena is not appeared.

  • PDF

NAVIER STOKES COMPUTATIONS ON A TWIN ENGINE NOZZLE-AFTERBODY

  • Gogoi, A.;Sundaramoorthi, S.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.761-770
    • /
    • 2008
  • The report presents turbulent Navier Stokes computations on twin engine afterbody model with jet exhaust. The computations are carried out for free-stream Mach number of 0.8 to 1.20 and jet pressure ratio of 3.4 to 7.8. The Spalart-Allmaras turbulence model is used in the computations. Comparison is made with experimental data and Cp distribution around the afterbody is found to agree well with experiments. Flow features of the exhaust jet like under expansion, over expansion, Mach discs, etc are well captured. The effect of nozzle pressure ratio and flight Mach number are studied in detail. These computations serve as validation of the in-house code for twin jet afterbody.

  • PDF

노즐 형상이 부족팽창 동축제트 근접 유동장에 미치는 영향 (Effect of Nozzle Geometry on the Near Field Structure of Under Expanded, Dual, Coaxial Jet)

  • 이권희;세토구치토시아키;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1649-1654
    • /
    • 2004
  • The near field structures of an under-expanded, dual, coaxial, jets issuing from the coaxial nozzles with four different geometries are visualized by using a shadowgraph optical method. Experiments are conducted to investigate the effects of the nozzle-lip thickness, secondary stream thickness, the nozzle pressure ratio and the secondary swirl stream on the characteristics of under-expanded jets. The results show that the presence of secondary annular swirling stream causes the Mach disk to move further downstream and increases its diameter, which decreases with a decrease in the nozzle-lip thickness. The secondary stream thickness has an influence on the location of an annular shock wave.

  • PDF

마일드 연소장 수치계산을 위한 화학반응기구의 예측성능 검토 (Investigation on the Prediction Performance of the Chemical Kinetics for the Numerical Simulation of MILD Combustion)

  • 김유정;오창보
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.341-344
    • /
    • 2012
  • The prediction performance of the chemical kinetics for the numerical simulation of MILD combustion was investigated. A wall-confined turbulent methane jet combustor was adopted as a configuration. Four chemical kinetics, such as a global 3-step, WD4, Skeletal, and DRM-19, were investigated, The air stream of the wall-confined MILD jet combustor was diluted with combustion products. It was found that the DRM-19 was optimal for the numerical simulation of the MILD combustion.

  • PDF

벽면으로 둘러싸인 제트 유동장에서의 마일드연소 및 오염물질 배출특성에 관한 전산해석 연구 (Computational Study of the Mild Combustion and Pollutant Emission Characteristics in Wall-confined Jet)

  • 송금미;오창보
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.263-266
    • /
    • 2012
  • The characteristics of mild combustion and pollutant emission were investigated computationally with supplied air stream temperature and dilution rate in jet flame. The air was diluted with main combustion products. As dilution rate increased at fixed air temperature, the temperature distribution of burner inside was uniformed and the maximum mole fraction of CO and NO was decreased. In addition, emission indices for NO, CO, and $CO_2$ were compared with air temperature and dilution rate.

  • PDF

제트 노즐의 배치가 콴다 날개의 성능에 미치는 영향 (Influence of Jet Nozzle Arrangement on the Performance of a Coanda Foil)

  • 서대원;김종현;김효철;이승희
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.569-578
    • /
    • 2008
  • The Coanda effects demonstrate that a jet stream applied tangential to a curved surface can generate lift force by increasing the circulation. Many experimental and numerical studies have been performed on the Coanda effect and it is found to be useful in various fields of aerodynamics. The Coanda effect may have practical application to marine hydrodynamics since various control surfaces are being used to control behaviors of ships and offshore structures. In the present study, numerical computations are performed to find the applicability of the Coanda effect to the marine control surfaces. For the purpose, changes in flow characteristics around a flapped foil due to the Coanda effect have been simulated by RANS equations discretized with a cell-centered finite volume method (FVM). In the process, special attention has been given to the influence of jet nozzle arrangement on the lift characteristics of the Coanda foil. It is found that the shape as well as the location of the jet intake and jet exit affects the lift performance of the foil significantly.

흐름 수역(水域)에서 연직상향부력(鉛直上向浮力)? (Vertical Buoyant Jet in Tidal Water -Crossflowing Environment-)

  • 윤태훈;차영기;김창완
    • 대한토목학회논문집
    • /
    • 제7권1호
    • /
    • pp.11-22
    • /
    • 1987
  • 흐름수역(水域)에서 연직상향으로 방류되는 평면부력(平面浮力)?의 거동이 연속방정식(連續方程式), 운동량방정식(運動量方程式) 및 추적물수송식(追跡物輸送式)의 기본방정식을 수치적(數値的)으로 풀음으로서 해석(解析)된다. 난류확산(亂流擴散)에는 Prandtl의 혼합거리이론(混合距離理論)을 도입한 난류수송모형(亂流輸送模型)이 이용된다. 수치해과정(數値解過程)은 기본방정식을 유함수(流凾數)(stream function)식(式)과 골도수송(滑度輸送)(vorticity transport)식을(式) 이용하여 변환(變換)한 후, ?방류속도(放流速度), ?방류구폭(放流口幅) 등(等)으로 표현되는 변수(變數)와 흐름을 지배(支配)하는 무차원매개변수(無次元媒介變數)를 도입하여 무차원화(無次元化)하고 successive under-relaxation을 이용하여 Gauss-Seidal 반복법(反復法)으로 해를(解) 구(求)하는 것이다. 수치실험(數値實驗)은 방류(放流)Froude수(數)가 4~32, 방류속도(放流速度)와 가로흐름속도와의 비로(比) 정의되는 속도비가 8~15 의 범위의 흐름영역(領域)에서 수행되었다. 부력(浮力)?으로 인한 주변(周邊)흐름수역(水域)의 속도변화(速度變化), 온도상승(溫度上昇)범위, 흐름상태 및 골도(滑度)가 조사되었으며, ?의 경로에 대한 속도비와 방류밀도Froude 수의 영향이 또한 조사되었다. ?중심선의 속도, 온도변화, 국부밀도(局部密度)Froude 수(數)의 변화가 계산되며 퍼짐율(spreading rate)과 확산비(擴散比)(dispersion ratio)가 방류밀도(放流密度)Froude 수, 국부밀도(局部密度)Froude 수(數) 및 속도비(速度比)의 항(項)으로 해석되었다. 또한 속도와 온도분포를 상사(相似)(similarity)로 나타낼 수 있음이 밝혀졌으며, Gaussian 분포(分布)를 이용한 적분형해석(積分型解析)(integral type analysis)이 가능한 것으로 사료된다.

  • PDF