• Title/Summary/Keyword: Jet Shear Layer

Search Result 73, Processing Time 0.038 seconds

Plume Interference Effects on the Missile with a Simplified Afterbody at Transonic$^{}$ersonic Speeds

  • Kim, H. S.;Kim, H. D.;Lee, Y. K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.41-42
    • /
    • 2002
  • The powered missiles with very high thrust level can make highly underexpanded jet plume downstream of tile exhaust nozzle exit so that strong interactions between the exhaust plume and a free stream occur around the body at transonic or supersonic speeds. The interactions result in extremely complicated flow phenomena, which consist of plume-induced boundary layer separation, strong shear layers, various shock waves, and interactions among these. The flow characteristics are inherent nonlinear and severe unstable during the flight at its normal speed as well as taking-off and landing. Eventually, the induced boundary layer separation and pitching and yawing moments by the interactions cause undesirable effects ell the static stability and control of a missile.

  • PDF

An Experimental Study of Supersonic Underexpanded Jet Impinging on an Inclined Plate (경사 평판에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;윤현걸;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.67-74
    • /
    • 1999
  • Problems created by supersonic jet impinging on solid objects or ground arise in a variety of situations. For example multi-stage rocket separation, deep-space docking, V/STOL aircraft, jet-engine exhaust, gas-turbine blade, terrestrial rocket launch, and so on. These impinging jet flows generally contain a complex structures. (mixed subsonic and supersonic regions, interacting shocks and expansion waves, regions of turbulent shear layer) This paper describes experimental works on the phenomena (surface pressure distribution, flow visualization) when underexpanded supersonic jets impinge on the perpendicular, inclined plate using a supersonic cold-(low system. The used supersonic nozzle is convergent-divergent type, exit Mach number 2, The maximum on the plate when it was inclined was much larger than perpendicular plate, owing to high pressure recoveries through multiple shocks. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

Numerical Study on a Model Scramjet Engine with a Backward Step (후방단이 있는 모델 초음속연소기의 연소수치해석)

  • Moon, Guee-Won;Jeong, Eun-Ju;Lee, Byeong-Ro;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.32-36
    • /
    • 2002
  • A numerical study was carried out to investigate combustion phenomena in a model Scramjet engine, which had been experimentally studied at the University of Tokyo using a high-enthalpy supersonic wind tunnel. The main airflow was Mach number 2.0 and the total temperature of hot flow was 1800K. Equivalence ratio was set to be 0.26 which is higher than that of experiment to investigate the effect of strong precombustion shock. The results showed that self-ignition occurred at the rear bottom wall of the combustor and combined with the shear layer flame between fuel jet and main airflow. Then, precombustion shock was generated at the step location and reversely enhanced the mixing and combustion process behind the shock. Due to the high equivalence ratio, the precombustion shock moved upstream of the step compared with that of experiment.

  • PDF

Numerical Study on a Model Scramjet Engine with a Backward Step (후방단이 있는 모델 초음속연소기의 연소수치해석)

  • Moon, G.W.;Jeung, I.S.;Jeong, E.J.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.127-132
    • /
    • 2001
  • A numerical study was carried out to investigate the combustion phenomena in a model Scramjet engine, which had been experimentally studied in the University of Tokyo using a high-enthalpy supersonic wind tunnel. The main airflow was 2.0 in Mach number and the total temperature of hot flow was 1800K. Equivalence ratio was set to be rather higher value of 0.26 than that of experiment to investigate the effect of strong precombustion shock. The results showed that self-ignition occurred at the rear bottom wall of the combustor and combined with the shear layer flame between fuel jet and main airflow. Then, precombustion shock was generated at the step location and reversely enhanced the mixing and combustion process behind the shock. Due to the high equivalence ratio, the precombustion shock moved upstream of the step compared with that of experiment.

  • PDF

Application of Subgrid Turbulence Model to the Finite Difference Lattice Boltzmann Method (차분 래티스볼츠만법에 Subgrid 난류모델의 적용)

  • Kang Ho-Keun;Ahn Soo-Whan;Kim Jeong-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.580-588
    • /
    • 2006
  • Two-dimensional turbulent flows past a square cylinder and cavity noise are simulated by the finite difference lattice Boltzmann method with subgrid turbulence model. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of FDLBM for handling arbitrary boundaries. The results are compared with those by the experiments carried out by Noda & Nakayama and Lyn et al. Numerical results agree with the experimental ones. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.

Numerical analysis of the impulsive noise generation and propagation using high order scheme (고차의 수치적 기법을 적용한 충격소음의 생성 및 전파 해석)

  • Kim, Min-Woo;Kim, Sung-Tae;Kim, Kyu-Hong;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1494-1498
    • /
    • 2007
  • Impulsive shooting noise is basically complex phenomenon which contains the linear and non-linear characteristics. For those reasons, numerical analysis of impulsive shooting noise has the difficulties in control of the numerical stability and accuracy on the simulation. In this research, Wave-number Extended Finite Volume Scheme (WEFVS) is applied to the numerical analysis of impulsive shooting noise. In the muzzle blast flow simulation, the generation of the precursor wave and the induced vortex ring are observed. Consequently, blast wave. vortex ring interaction and vortex ring. bow shock wave interaction are evaluated on the shooting process using the accurate and stable scheme. The sound generation in the interactions can be explained by the vorticity transport theorem. The shear layer is evolved behind the projectiles due to the jet flow. In these computations, the impulsive shooting noise is generated by the complex interaction with shooting process and is propagated to the far-field boundary. The impulsive shooting noise generation can be observed by the applications of WEFVS and analyzed by the physical phenomena.

  • PDF

Flow Structure of the Wake behind an Elliptic Cylinder Close to a Free Surface

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1784-1793
    • /
    • 2001
  • The flow fields around an elliptic cylinder of axis ratio AR=2 adjacent to a free surface were investigated experimentally using a water channel. The main objective is to understand the effect of the free surface on the flow structure in the near-wake. The flow fields were measured by varying the depth of cylinder submergence, for each experimental condition, 350 velocity fields were measured using a single-frame PIV system and ensemble-averaged to obtain the spatial distribution of turbulent statics. For small submergence depths a large-scale eddy structure was observed in the near-wake, causing a reverse flow near the free surface, downstream of the cylinder. As the depth of cylinder submergence was increased, the flow speed in the gap region between the upper surface of the cylinder and the free surface increased and formed a substantial jet flow. The general flow structure of the elliptic cylinder is similar to previous results for a circular cylinder submerged near to a free surface. However, the width of the wake and the angle of downward deflection of the shear layer developed from the lower surface of the elliptic cylinder are smaller tan those for a circular cylinder.

  • PDF

Control of Turbulent Recirculating Flow by Local Forcing (국소교란에 의한 난류 재순환유동의 제어)

  • 전경빈;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.446-455
    • /
    • 1994
  • An experimental study is conducted for the turbulent recirculating flow behind a backward-facing step when the oscillating jet is issued sinusoidally through a thin slit at the separation edge. Two key parameters are dealt with in the present experiment, i.e., the amplitude of forcing and the forcing frequency. The Reynolds number based on the step height is varied from 25,000 to 35,000. In order to investigate the effect of local forcing, turbulent structures are scrutinized for both the flow of forcing and the flow of no forcing. The growth of shear layer with a local forcing is larger than that of no forcing. The influence of a local forcing brings forth the decrease of reattachment length and the particular frequency gives a minimum reattachment length. The most effective frequency depends on the non-dimensional frequency, St/sub .theta./, based on the momentum thickness at the separation point. A comparative study leads to the conclusion that the large-scale vortical structure is strongly associated with the forcing frequency and the natural flow instability.

Fluid Dynamic & Cavity Noise by Turbulence Model of the FDLBM with Subgrid Model (차분래티스 Subgrid모델의 난류모델을 이용한 유동현상 및 Cavity Noise 계산)

  • Kang, Ho-Keun;Ro, Ki-Deok;Kang, Myeong-Hoon;Kim, You-Taek;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1149-1154
    • /
    • 2005
  • The finite difference lattice Boltzmann method(FDLBM) is a quite recent approach for simulating fluid flow, which has been proven as a valid and efficient tool in a variety of complex flow problems. It is considered an attractive alternative to conventional FDM and FVM, because it recovers the Navier-Stokes equations and is computationally more stable, and easily parallelizable to simulate for various laminar flows and a direct simulation of aerodynamics sounds. However, the research of a numerical simulation of turbulent flow by FDLBM, which is important to analyze the structure of turbulent flow in engineering fields, is not carried out. In this research, the FDLBM built in the turbulent model is applied, and a flowfield around 2-dimensional square to validate the applied model with 2D9V is simulated. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.

  • PDF

Flow and Heat Transfer Characteristics of Acoustically Excited Axisymmetric Impinging Jet (음향여기된 축대칭 충돌제트의 유동 및 열전달 특성)

  • 조형희;이창호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.8-9
    • /
    • 1997
  • 산업의 발달과 환경에 대한 관심이 높아짐에 따라 고효율, 저공해인 가스터빈의 응용범위가 넓어지고 있는 추세이다. 가스터빈 기관의 효율을 높이기 위해서는 터빈 입구온도를 높이는 것이 필수적인데 이는 재질에 의해 제한 받게 되고 이 때문에 효과적인 냉각방법의 필요성이 대두되었다 충돌제트는 국소적으로 높은 열/물질 전달 효과를 얻을 수 있어서 터빈 블레이드 냉각과 연소기 벽면 냉각에 효과적으로 응용 될 수 있다. 이러한 충돌제트의 냉각효과는 제트출구의 초기조건에 매우 민감한데 Kelvin-Helmholts 불안정은 불안정한 자유전단층에서 자연적인 와류생성(roll up)과 개개의 와류고리 형성의 원인이 되고 이 고리의 성장과 병합(pairing)은 제트의 유동특성에 상당히 영향을 미친다. 제트주위에 생성되는 이러한 와류에 의해 제트중심에서 속도와 난류강도가 변하게 된다. 이러한 제트초기의 불안정성은 하류에서의 와류성장에 영향을 끼치기 때문에 와류의 조절에 의한 충돌 면에의 열 전달 효과 상승을 기대할 수 있다. 이 조절방법은 크게 두 가지로 나눌 수 있는데 하나는 제트주의 환형관에 이차유동을 가하여 와류를 직접 제어함으로써 자유전단류(free shear layer flow)의 안정성 원리를 이용하여 열 전달을 촉진하는 것이고 다른 하나는 음향여기(acoustic exitation)를 사용하여 제트주위의 와류형성을 조절하는 것인데, 자연적으로 형성되는 와류의 주파수(와류의 고유주파수)나 부조화 주파수(subharmonic)로 음향여기 시키는 경우 제트 주위 와류는 더욱 증폭되고 그렇지 않은 경우 제트주위 와류의 형성이 억제되어 더 긴 제트코어의 길이 및 제트코어 주위에서 작은 크기의 와류들이 형성된다.

  • PDF