• Title/Summary/Keyword: Jet Plume

Search Result 84, Processing Time 0.024 seconds

Evaluation of Smoke Control Performance of Ventilation System Using by Hot Smoke Test (Hot Smoke Test를 이용한 주차장 환기설비의 제연 성능평가)

  • Joung, Suckhwan
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.47-56
    • /
    • 2019
  • Recently, in order to overcome the difficulty of entering a fire source due to the occurrence of a large amount of smoke in the event of a fire in a parking lot, it has used that a method of discharge smoke using air supply, exhaust fans and jet fans installed for ventilation of parking lots. In this study, the variation of flow in the smoke layer was observed using CCTV under two conditions, in which only the air supply fan operates and the manned fan operates together, and the temperature around the plume was compared to Albert eq. to assess its suitability as a parking lot ventilation performance evaluation method. As a result, it was found that the smoke layer could be disturbed if the Jet Fan was operated at the same time, which could lead to the possibility of an initial evacuation disturbance. However, the additional operation of the Jet Fan has been confirmed by the observation CCTV that the emission performance is improved, which is believed to help conduct the suppression operation. The temperature around the plume was measured and compared to Alpert eq, and was analyzed to be about $2^{\circ}C$ lower at the center axis of the plume and $9.0^{\circ}C$ higher at 8 m in the direction of the discharge of smoke. The results of temperature measurements around the plume were lower than the maximum temperature expected in AS 4391 and did not exceed the expected temperature risk caused by the experiment. As with these results, the temperature risk from the progression of hot smoke tests is foreseeable, so it will be available as one of the general evaluation methods for assessing smoke control performance in a parking lot without relevant criteria.

Simulation of Jet Plume Impinging onto a Duct (닥트에 분사되는 제트플륨의 수치계산)

  • Hong Seung-Gyu;Lee Gwang-Seop;Baek Dong-Gi
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.44-50
    • /
    • 1997
  • Accurate simulation of jet plume exhausting into the open space as well as onto the opposing wall is of interest both numerically and physically; the latter, from a system designer's point of view. In the current work, Navier-Stokes computation is undertaken to capture the flow pattern of a supersonic jet impinging onto a rectangular duct which deflects the vertical jet horizontally. Of particular interest are the flow structure in the jet exhaust area, pressure pattern and the magnitude of pressure force at the bottom wall. Usefulness of present characteristic boundary condition applied at the exiting plane of the duct is demonstrated by capturing such complex flow structures for different lengths of the deflection duct.

  • PDF

An Experimental and Analytical Studies on the Smoke Movement by Fire in High Rise Building (초고층 건축물의 화재 시 피난로 연기거동에 관한 실험 및 해석적 연구)

  • Shin, Yi-Chul;Kim, Soo-Young;Lee, Ju-Hee;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.11-14
    • /
    • 2008
  • A study on the fire and smoke behavior on experiments and analysis through STAR-CD in using about behavior analysis of the smoke. Kerosene of 3L in using on the experimental garden of 30cm in diameter same applies to heat release rate(HRR), buoyant force by Plume can be calculated at a rate of 1m/s. The result of experiment in average of velocity were 0.29m/s, and interpreted result were 0.28m/s. Besides, it is proved by interpreted that behavior of smoke movement can be not observed in the experiment. After smoke is Plume increased, ceiling-jet in formation being descend in smoke layer will be more thick smoke layer, and then vertical wall is collapsed in formation of wall-jet being descend. It is defined that smoke layer is more thick through descending course in wall-jet and ceiling-jet.

  • PDF

A MODEL FOR THE PENETRATION RATE OF A BOUSSINESQ STARTING FORCED PLUME

  • LAW ADRIAN WING-KEUNG;AI JIAO JIAN;YU S.C.M
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.951-951
    • /
    • 2005
  • The characteristics of Boussinesq starting forced plumes were investigated in this study. Two distinct periods in the transient plume penetration were identified, namely the Period of Flow Development (PFD) and Period of Developed Flow (PDF). PFD refers to the time period whereby the penetration rate is governed by the complex vortex dynamics initiated by the exit conditions that can include vortex coalescence, vortex leapfrogging, pinching off of the head vortex from the trailing stem and the eventual reconnection. The pinch-off and reconnection leads to an overshoot of the plume front which is a common observation reported in previous studies. The penetration rate in PDF is more predictable and depends on the continuous feeding of buoyancy and momentum into the head vortex by the trailing buoyant-jet stem. Similarity solutions are developed for PDF to describe the temporal variation of the penetration rate, by incorporating the behavior of an isolated buoyant vortex ring and recent laboratory results on the trailing buoyant jet. In particular, the variations of velocity ratios between the head vortex and trailing buoyant jet are analytically computed. To verify the similarity solutions, experiments were conducted on vertical starting forced plumes using planar laser induced fluorescence (PLIF).

  • PDF

NUMERICAL ANALYSIS OF TUNNEL FLOW INDUCED BY JET FAN (제트팬 운전에 의해 형성되는 터널내 유동에 대한 수치적 해석)

  • Kim, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.10-13
    • /
    • 2010
  • The flow field in road tunnel is influenced by some facts such as piston effect of vehicle's move, operation of ventilation facilities, natural wind and buoyancy effect of fire plume. Among those, jet fan is one of main ventilation facilities especially in longitudinal ventilation system of tunnel. In this study to analyze tunnel flow induced by operation of jet fan, numerical simulation has been carried out. The velocity distributions and streamlines in tunnel are examined to consider the three-dimensional characteristics of tunnel flow caused by jet fan.

  • PDF

Characteristics of the Base Pressure in High-Speed Jet Plume (고속제트 플럼에서의 기저압력 특성)

  • Lijo, Vincent;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.193-195
    • /
    • 2011
  • An abrupt increase of duct cross-section is frequently encountered in pressure reducing devices, valves of internal combustion engines and in gas pipelines. Supersonic flow in a rectangular duct passing an abrupt increase of cross-section is studied numerically. The behavior of base pressure of the dead-air region at sudden enlargement of the duct is clarified. This investigation concerns the determination of the base pressure, which is independent of the size of the enlarged part. Several flow patterns are identified with different enlargements according to the ratio between the downstream ambient pressure and the upstream reservoir pressure. Base pressure and the resulting shock-structure are highly depending on the size of duct enlargement. For a given duct, base pressure tends to minimum for a particular pressure ratio. In addition, the locations of secondary separation and reattachment points of the jet plume are found with respect to different duct enlargements.

  • PDF

Preliminary numerical study on hydrogen distribution characteristics in the process that flow regime transits from jet to buoyancy plume in time and space

  • Wang, Di;Tong, Lili;Liu, Luguo;Cao, Xuewu;Zou, Zhiqiang;Wu, Lingjun;Jiang, Xiaowei
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1514-1524
    • /
    • 2019
  • Hydrogen-steam gas mixture may be injected into containment with flow regime varying both spatially and transiently due to wall effect and pressure difference between primary loop and containment in severe accidents induced by loss of coolant accident. Preliminary CFD analysis is conducted to gain information about the helium flow regime transition process from jet to buoyancy plume for forthcoming experimental study. Physical models of impinging jet and wall condensation are validated using separated effect experimental data, firstly. Then helium transportation is analyzed with the effect of jet momentum, buoyancy and wall cooling discussed. Result shows that helium distribution is totally dominated by impinging jet in the beginning, high concentration appears near gas source and wall where jet momentum is strong. With the jet weakening, stable light gas layer without recirculating eddy is established by buoyancy. Transient reversed helium distribution appears due to natural convection resulted from wall cooling, which delays the stratification. It is necessary to concern about hydrogen accumulation in lower space under the containment external cooling strategy. From the perspective of experiment design, measurement point should be set at the height of connecting pipe and near the wall for stratification stability criterion and impinging jet modelling validation.

Experimental study on the condensation of sonic steam in the underwater environment

  • Meng, Zhaoming;Zhang, Wei;Liu, Jiazhi;Yan, Ruihao;Shen, Geyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.987-995
    • /
    • 2019
  • Steam jet condensation is of great importance to pressure suppression containment and automatic depressurization system in nuclear power plant. In this paper, the condensation processes of sonic steam jet in a quiescent subcooled pool are recorded and analyzed, more precise understanding are got in direct contact condensation. Experiments are conducted at atmospheric pressure, and the steam is injected into the subcooled water pool through a vertical nozzle with the inner diameter of 10 mm, water temperature in the range of $25-60^{\circ}C$ and mass velocity in the range of $320-1080kg/m^2s$. Richardson number is calculated based on the conservation of momentum for single water jet and its values are in the range of 0.16-2.67. There is no thermal stratification observed in the water pool. Four condensation regimes are observed, including condensation oscillation, contraction, expansion-contraction and double expansion-contraction shapes. A condensation regime map is present based on steam mass velocity and water temperature. The dimensionless steam plume length increase with the increase of steam mass velocity and water temperature, and its values are in the range of 1.4-9.0. Condensation heat transfer coefficient decreases with the increase of steam mass velocity and water temperature, and its values are in the range of $1.44-3.65MW/m^2^{\circ}C$. New more accurate semi-empirical correlations for prediction of the dimensionless steam plume length and condensation heat transfer coefficient are proposed respectively. The discrepancy of predicted plume length is within ${\pm}10%$ for present experimental results and ${\pm}25%$ for previous researchers. The discrepancy of predicted condensation heat transfer coefficient is with ${\pm}12%$.