• 제목/요약/키워드: Jet Break-up

검색결과 23건 처리시간 0.023초

제트 질량 변수 조절에 의한 성형작약 관통성능 증대 연구 (A Study on the Improvement of Penetration Capability of a Shaped Charge by Controlling the Jet Mass Parameters)

  • 소병관
    • 한국군사과학기술학회지
    • /
    • 제18권5호
    • /
    • pp.566-573
    • /
    • 2015
  • The most important factor for the penetration performance of shaped charge is the liner design. By designing the liner to have properties of both high jet tip velocity and long jet break-up time, the better penetration performance could be acquired. Usually it is very difficult to satisfy above two conditions simultaneously. In this study, the liner with the shape of ogive was developed to have relatively larger jet mass compared to the conventional trumpet liner. The designed shaped charge showed jet properties with high jet tip velocity and long jet break-up time by using ogive liner and wave shaper. A commercially available hydro-dynamic code AUTODYN-2D was used for numerical analysis of jet formation. The flash X-ray test and the static penetration test were conducted to verify the results of numerical analysis.

Evaluation of the TEXAS-V Fragmentation Models Against Experimental Data

  • Song Jin H.;Park Ik K.;Nilsuwankosit Sunchai
    • Nuclear Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.276-284
    • /
    • 2004
  • This paper presents the results of the TEXAS-V computer code simulations of FARO L-14, L-28, and L-33. The old break-up model and new break-up model are tested to compare the respective simulations of each. As these experimental data sets cover a wide range of ambient pressures, sub-cooling of the water pool, and the melt jet diameters, the results of the simulations will be beneficial in assessing the TEXAS-V code's capability to predict the steam explosion phenomena in a prototypical reactor case. The current model was found to have some deficiencies, and the modules for the fragmentation, the equation of state, and the interfacial area for each flow regime in TEXAS-V were improved for the simulation of FARO L28 and FARO L-33.

벽면 충돌분무의 반경방향 흐름과 액적 비산에 관한 고찰 (RADIAL FLOW AND DROPLETS SPLASH OBSERVED ON A WALL IMPINGEMENT JET)

  • 김영일
    • 한국산업융합학회 논문집
    • /
    • 제3권1호
    • /
    • pp.37-42
    • /
    • 2000
  • 액체 분무가 벽면의 평평한 면에 충돌할 때의 거동에 대해 실험을 통하여 조사하였다. 각 분사노즐과 벽면까지의 거리 그리고 분사 속도에 있어서 충돌점에서의 액체 액막의 비산 거동과 평면에서의 액막의 흐름에 대하여 관찰하였다. 충돌점에서 비산하는 액적의 비산율을 정량적으로 측정하였다. 분사속도가 증가에 의해 충돌 거동은 5개의 영역으로 분류되며, 분사속도가 증가하면 비산율도 증가하게 된다. 또한, 충돌거리가 분무의 분열점보다 길때의 분사량의 약 반 정도가 비산하게 되는 결과가 얻어졌다.

  • PDF

고온고속기류 중에 수직 분사되는 액체제트의 연소 및 분무특성 (Combustion and Spray Characteristics of Jet in Crossflow in High-Velocity and High-Temperature Crossflow Conditions)

  • 윤현진;구건우;김준희;홍정구;박철우;이충원
    • 대한기계학회논문집B
    • /
    • 제37권1호
    • /
    • pp.67-74
    • /
    • 2013
  • 주류공기에 수직으로 분사되는 JICF 분사시스템은 연소실내에서 주류공기의 영향을 최소화하면서 미립화 및 연소성능을 향상시키기 위한 추진시스템의 연료분사 방식으로 넓은 적용범위를 가지고 있다. 하지만 JICF 분사시스템에서 산화제인 공기와 연료의 불충분한 혼합성능은 연소실 내에서의 불균일한 화염구조를 형성한다. 따라서 본 연구에서는 JICF 분사시스템의 램제트 연소기에서 연료와 공기의 부족한 혼합성능에 기인한 연소의 불균일한 화염구조를 실험적으로 확인하고, 연료 제트의 침투깊이, 분열점 등을 예측하기 위한 상관관계식을 유도함으로서 JICF 분사시스템에서 연소성능에 영향을 미치는 액체제트와 주류공기와의 분무 및 혼합특성을 파악하였다. 특히, 액체 제트의 침투깊이를 주류공기의 유동방향의 상류와 하류로 나누어 상관관계식을 유도하여 좀더 정확한 침투깊이의 예측이 가능하도록 하였다.

정전분무의 유체 물성치와 정전 매개변수 따른 분무특성 (Spray Characteristics according to Fluid Properties and Electric Parameters of Electrospray)

  • 김지엽;홍정구
    • 한국분무공학회지
    • /
    • 제25권2호
    • /
    • pp.81-88
    • /
    • 2020
  • Electrospray is used in various industries because it can produce continuous and uniform droplets. However, it is difficult to find optimal spraying condition due to lack of data in various conditions. In this study, various conditions were divided into electric parameters and fluid property. The electric parameters set Nozzle to Substrate(NTS), nozzle diameters and the fluid property set viscosity and conductivity as conditions. In this study, it observes spray patterns, Sauter Mean Diameter(SMD) according to conditions. As a result, fluid properties had a greater effect on the cone-Jet mode than on the nozzle diameter, NTS, and flowrate. All of solutions have Stable cone-jet mode at voltage of 8.5 kV, NTS of 20 mm and nozzle diameter of 0.2 mm. SMD has 27% different depending on viscosity and conductivity. The increased flowrate and viscosity are rising break-up length and thickening jet also jet is thinned by increased conductivity. Experiments have confirmed that the jet is thickened by increased flowrate and viscosity, and that the jet is thinned by conductivity.

공급 질량비 변화에 따른 2유체 노즐의 액주분열특성에 관한 실험적 연구 (An Experimental Study on the Break-up Characteristics of Twin-Fluid Nozze According to tile Variations of Feeding Mass-ratio)

  • 강신재;오제하;노병준
    • 한국분무공학회지
    • /
    • 제1권1호
    • /
    • pp.63-75
    • /
    • 1996
  • The purpose of this study is to investigate the break-up characteristics by taking advantage of a two-phase coaxial nozzle. Air and water are utilized as working fluids and the mass ratio air/water has been controlled to characterize the atomization, diffusion and development of mixing process. By way of a photographic technique, conventional developing structures and diffusion angles have been analyzed systematically with variations of mass ratios. The turbulent flow components of the atomized particles were measured by a two channel LDV system and the data were treated by an on-lined measurement equipment. According to the photographic results the spreading angles decreased because the axial inertia moment was relatively higher than the lateral one with respect to the increase of mass ratio. It is found the jet flow diffuses linearly in a certain limit region while the atomizing characteristics, in terms of the distributions of particle diameters did not show particular differences. It may be expected that these fundamental results can be used as reference data in studying the atomization, breakup and diffusions.

  • PDF

간헐 가솔린 분무의 충돌에 의한 미립화 촉진 (Impinging Atomization of Intermittent Gasoline Sprays)

  • 원영호;임치락
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.174-181
    • /
    • 1998
  • Experimental and analytical studies are presented to characterize the break-up mechanism and atomization processes of the intermittent- impinging-type nozzle. Gasoline jets passing through the circular nozzle with the outlet diameter of 0.4mm and the injection duration of 10ms are impinged on each other. The impingement of fuel jets forms a thin liquid sheet, and the break-up of the liquid sheet produces liquid ligaments and droplets subsequently. The shape of liquid sheets was visualized at various impinging velocities and angles using the planer laser induced fluorescence (PLIF) technique. Based on the Kelvin-Helmholtz wave instability theory, the break-up length of liquid sheets and the droplet diameter are obtained by the theoretical analysis of the sheet disintegration. The mean diameter of droplet is also estimated analytically using the liquid sheet thickness at the edge and the wavelength of the fastest growing wave. The present results indicate that the theoretical results are favorably agreed with the experimental results. The size of droplets decreases after the impingement as the impinging angle or the injection pressure increase. The increment of the injection pressure is more effective than the increment of the impinging angle to reduce the size of droplets.

  • PDF

저속 횡단유동장에 분사된 액체제트의 분무궤적 및 분열점에 대한 상관관계식 (Correlations of Trajectory and Break-up Point for Liquid Jet Injected into Low Speed Cross-flow)

  • 김종현;이봉수;구자예
    • 한국분무공학회지
    • /
    • 제13권2호
    • /
    • pp.79-84
    • /
    • 2008
  • The correlations for cross-flow have not been well established, because of the complexity of breakup and atomization mechanism. A study was performed to investigate the characteristics of spray behaviour of liquid jet in the bag breakup regime injected into low-speed cross-flow with the pressure single-hole nozzle. The shadow-graphy method was used for the cross-flow jet visualization. The experimental variables of liquid jet were nozzle diameter $(0.3mm{\sim}1.0mm)$, injection pressure $(50kPa{\sim}150kPa)$, and the velocity of cross-flow $(27m/s{\sim}42m/s)$. The highest penetration trajectories of liquid jet are governed by the momentum ratio $({\rho}_{\iota}U_{\iota}^2/{\rho}_aU_{cross}^2)$ rather than the Weber number and the new empirical equations of the highest penetration trajectory and breakup point at low-speed corss-flow are established.

  • PDF

2유체 정전분무의 액체 미립화 및 분무 특성 (Liquid Atomization and Spray Characteristics in Electrostatic Spray of Twin Fluids)

  • 김정헌;배충식
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1552-1560
    • /
    • 2001
  • This paper presents the experimental results of a study undertaken to develop an electrostatic spray system for a combustion application. The characteristics of the liquid atomization and the droplet dispersion in the electrostatic spray of twin fluids were investigated by the optical measurement techniques. The processes associated with the break-up of charged jets were also observed using the laser sheet visualization. The diameter and velocity of droplets were simultaneously measured using the phase Doppler measurement technique. The electrostatic atomization of the liquid fuel depended primarily on the charging voltage and the flow rate, but the dispersion of droplets depended significantly on the aerodynamic flow. Aerodynamic influences on the liquid atomization decreased with an increase of the charging voltage. Consequently, the liquid atomization and the droplet dispersion could be independently controlled using the electrostatic and aerodynamic mechanisms.

액체 분무의 벽면 충돌분무에 의한 액적 비산 (Droplets Splash Related with a Wall Impingement of Liquid Jet)

  • 김영일
    • 한국산업융합학회 논문집
    • /
    • 제7권1호
    • /
    • pp.5-11
    • /
    • 2004
  • 벽면에 충돌하는 액체 분무의 충돌 거동과 액적 비산에 관하여 실험을 통하여 조사하였다. 액체 분무는 홀노즐에 의해 직경 40mm의 충돌판에 분사하게 된다. 액체 분무는 반경방향으로 퍼져나가 5개의 영역으로 분류되어 나타내게 된다. 난류 혹은 층류 분무의 경우, 충돌판에 충돌한 후 두꺼운 액막을 형성하게 되며, 이러한 상태에서 충돌하는 분무의 비산량은 매우 적으며 충돌 거리에 영향을 받지 않는다. 한편, 파동이 있는 분무의 충돌은 수력도약(Hydraulic jump)과 함께 반경방향으로 엷은 액막을 형성하게 되며 비산율도 증가하게 된다. 액체분무의 초속도가 증가하면 비산율도 증가하게 된다. 분열이 일어난 후에 충돌하는 파동 분무의 비산율은 분열이 일어나기 전에 비해 약 2~3배 정도 크게 나타난다. 비산율은 웨버수(Weber number)를 이용하여 요약할 수가 있다.

  • PDF