• Title/Summary/Keyword: Jensen-Shannon divergence

Search Result 5, Processing Time 0.017 seconds

Automatic Detection of Texture-defects using Texture-periodicity and Jensen-Shannon Divergence

  • Asha, V.;Bhajantri, N.U.;Nagabhushan, P.
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.359-374
    • /
    • 2012
  • In this paper, we propose a new machine vision algorithm for automatic defect detection on patterned textures with the help of texture-periodicity and the Jensen-Shannon Divergence, which is a symmetrized and smoothed version of the Kullback-Leibler Divergence. Input defective images are split into several blocks of the same size as the size of the periodic unit of the image. Based on histograms of the periodic blocks, Jensen-Shannon Divergence measures are calculated for each periodic block with respect to itself and all other periodic blocks and a dissimilarity matrix is obtained. This dissimilarity matrix is utilized to get a matrix of true-metrics, which is later subjected to Ward's hierarchical clustering to automatically identify defective and defect-free blocks. Results from experiments on real fabric images belonging to 3 major wallpaper groups, namely, pmm, p2, and p4m with defects, show that the proposed method is robust in finding fabric defects with a very high success rates without any human intervention.

A study on the performance improvement of learning based on consistency regularization and unlabeled data augmentation (일치성규칙과 목표값이 없는 데이터 증대를 이용하는 학습의 성능 향상 방법에 관한 연구)

  • Kim, Hyunwoong;Seok, Kyungha
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.167-175
    • /
    • 2021
  • Semi-supervised learning uses both labeled data and unlabeled data. Recently consistency regularization is very popular in semi-supervised learning. Unsupervised data augmentation (UDA) that uses unlabeled data augmentation is also based on the consistency regularization. The Kullback-Leibler divergence is used for the loss of unlabeled data and cross-entropy for the loss of labeled data through UDA learning. UDA uses techniques such as training signal annealing (TSA) and confidence-based masking to promote performance. In this study, we propose to use Jensen-Shannon divergence instead of Kullback-Leibler divergence, reverse-TSA and not to use confidence-based masking for performance improvement. Through experiment, we show that the proposed technique yields better performance than those of UDA.

Traffic Speed Prediction Based on Graph Neural Networks for Intelligent Transportation System (지능형 교통 시스템을 위한 Graph Neural Networks 기반 교통 속도 예측)

  • Kim, Sunghoon;Park, Jonghyuk;Choi, Yerim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.70-85
    • /
    • 2021
  • Deep learning methodology, which has been actively studied in recent years, has improved the performance of artificial intelligence. Accordingly, systems utilizing deep learning have been proposed in various industries. In traffic systems, spatio-temporal graph modeling using GNN was found to be effective in predicting traffic speed. Still, it has a disadvantage that the model is trained inefficiently due to the memory bottleneck. Therefore, in this study, the road network is clustered through the graph clustering algorithm to reduce memory bottlenecks and simultaneously achieve superior performance. In order to verify the proposed method, the similarity of road speed distribution was measured using Jensen-Shannon divergence based on the analysis result of Incheon UTIC data. Then, the road network was clustered by spectrum clustering based on the measured similarity. As a result of the experiments, it was found that when the road network was divided into seven networks, the memory bottleneck was alleviated while recording the best performance compared to the baselines with MAE of 5.52km/h.

Uncertainty of future runoff projection according to SSP scenarios and hydrologic model parameters (미래 기후변화 시나리오와 수문모형 매개변수에 따른 미래 유량예측 불확실성)

  • Kim, Jin Hyuck;Song, Young Hoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • Future runoff analysis is influenced by climate change scenarios and hydrologic model parameters, with uncertainties. In this study, the uncertainty of future runoff analysis according to the shared socioeconomic pathway (SSP) scenario and hydrologic model parameters was analyzed. Among the SSP scenarios, the SSP2-4.5 and SSP5-8.5 scenarios were used, and the soil and water assessment tool (SWAT) model was used as the hydrologic model. For the parameters of the SWAT model, a total of 11 parameter were optimized to the observed runoff data using SWAT-CUP. Then, uncertainty analysis of future estimated runoff compared to the observed runoff was performed using jensen-shannon divergence (JS-D), which can calculate the difference in distribution. As a result, uncertainty of future runoff was analyzed to be larger in SSP5-8.5 than in SSP2-4.5, and larger in the far future (2061-2100) than in the near future (2021-2060). In this study, the uncertainty of future runoff using future climate data according to the parameters of the hydrologic model is as follows. Uncertainty was greatly analyzed when parameters used observed runoff data in years with low flow rates compared to average years. In addition, the uncertainty of future runoff estimation was analyzed to be greater for the parameters of the period in which the change in runoff compared to the average year was greater.

Sorting Instagram Hashtags all the Way throw Mass Tagging using HITS Algorithm

  • D.Vishnu Vardhan;Dr.CH.Aparna
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.93-98
    • /
    • 2023
  • Instagram is one of the fastest-growing online photo social web services where users share their life images and videos with other users. Image tagging is an essential step for developing Automatic Image Annotation (AIA) methods that are based on the learning by example paradigm. Hashtags can be used on just about any social media platform, but they're most popular on Twitter and Instagram. Using hashtags is essentially a way to group together conversations or content around a certain topic, making it easy for people to find content that interests them. Practically on average, 20% of the Instagram hashtags are related to the actual visual content of the image they accompany, i.e., they are descriptive hashtags, while there are many irrelevant hashtags, i.e., stophashtags, that are used across totally different images just for gathering clicks and for search ability enhancement. Hence in this work, Sorting instagram hashtags all the way through mass tagging using HITS (Hyperlink-Induced Topic Search) algorithm is presented. The hashtags can sorted to several groups according to Jensen-Shannon divergence between any two hashtags. This approach provides an effective and consistent way for finding pairs of Instagram images and hashtags, which lead to representative and noise-free training sets for content-based image retrieval. The HITS algorithm is first used to rank the annotators in terms of their effectiveness in the crowd tagging task and then to identify the right hashtags per image.