• Title/Summary/Keyword: Jeju-Island power system

Search Result 109, Processing Time 0.03 seconds

Performance Monitoring and Load Analysis of Wind Turbine (풍력발전기의 성능 모니터링 및 하중분석)

  • Bae, Jae-Sung;Kim, Sung-One;Youn, Joung-Eun;Kyung, Nam-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.385-389
    • /
    • 2004
  • Test facilities for the wind turbine performance monitoring and mechanical load measurements are installed in Vestas 100 kW wind turbine in Wollyong test site, Jeju island. The monitoring system consists of Garrad-Hassan T-MON system, telemetry system for blade load measurement, various sensors such as anemometer, wind vane, strain gauge, power meter, and etc. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the established monitoring system, the wind turbine is remotely monitored. From the measured load data, the load analysis has been performed to obtain the load power spectral density and the fatigue load spectra of the wind turbine.

  • PDF

Development of HVDC Submarine Cable Surveying System with Integrated Pathfinder (유인잠수정 통합형 MVDC 해저케이블 점검시스템 개발)

  • Ahn Y. H.;Yu H. Y.;Lee B. H.;Jo G. J.;Jung C. S.;Kim H. H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.597-601
    • /
    • 2004
  • HVDC(High Voltage Direct Current) is an underwater cable between Jeju Island and Haenam in main land and supplies approximately $50\%$ of electrical usage in Jeju Island. If there is any power failure due to HVDC, it will cost approximately 50,000 US dollars per day including Thermal Electrical Generation. Therefore it is absolutely necessary to recover the problem in rapid timely basis. Present survey method in Korea is done by scuba diver with air cylinder resulting very poor visual inspection. Other option is by only visual camera attached on miniature ROV for solely suey Purpose. This method does not includeburial depth of cable, cable position, cable condition & etc??‥‥.??? In result, current method does not generate any scientific or sophisticated data which does not allow any intelligent management decision. In conclusion, new method and new systems are needed urgently to upgrade current HVDC underwater cable survey technique in Korea to minimize the cost and time factors.

  • PDF

Optimal Power Control Strategy for Wind Farm with Energy Storage System

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.726-737
    • /
    • 2017
  • The use of energy storage systems (ESSs) has become a feasible solution to solve the wind power intermittency issue. However, the use of ESSs increases the system cost significantly. In this paper, an optimal power flow control scheme to minimize the ESS capacity is proposed by using the zero-phase delay low-pass filter which can eliminate the phase delay between the dispatch power and the wind power. In addition, the filter time constant is optimized at the beginning of each dispatching interval to ensure the fluctuation mitigation requirement imposed by the grid code with a minimal ESS capacity. And also, a short-term power dispatch control algorithm is developed suitable for the proposed power dispatch based on the zero-phase delay low-pass filter with the predetermined ESS capacity. In order to verify the effectiveness of the proposed power management approach, case studies are carried out by using a 3-MW wind turbine with real wind speed data measured on Jeju Island.

Optimization of Wind Power Dispatch to Minimize Energy Storage System Capacity

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1080-1088
    • /
    • 2014
  • By combining a wind turbine with an energy storage system (ESS), we are able to attenuate the intermittent wind power characteristic making the power derived from a wind farm dispatchable. This paper evaluates the influence of the phase delay of the low-pass filter in the conventional smoothing power control on the ESS capacity; longer phase delays require a larger ESS capacity. In order to eliminate the effect of the phase delay, we optimize the power dispatch using a zero-phase low-pass filter that results in a non-delayed response in the power dispatch. The proposed power dispatching method significantly minimizes the ESS capacity. In addition, the zero-phase low-pass filter, which is a symmetrical forward-reverse finite impulse response type, is designed simply with a small number of coefficients. Therefore, the proposed dispatching method is not only optimal, but can also be feasibly applied to real wind farms. The efficacy of the proposed dispatching method is verified by integrating a 3 MW wind turbine into the grid using wind data measured on Jeju Island.

Moored measurement of the ambient noise and analysis with environmental factors in the coastal sea of Jeju Island (제주 연해 수중 주변소음 계류 측정과 환경 변화에 따른 분석)

  • Jeong, Inyong;Min, Soohong;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.390-399
    • /
    • 2020
  • Underwater ambient noise was measured at the eastern and western costal sites of Jeju Island where the water depth was 20 m by a hydrophone moored at mid-depth (10 m) for 4 months. These eastern and western sites were selected as potential sites for offshore wind power generator and the current wave energy generator, respectively. Ambient noise was affected by environmental data such as wind and wave, which were collected from nearby weather stations and an observation station. Below 100 Hz, ambient noise was changed about 5 dB ~ 20 dB due to low and high tide. Below 1 kHz, wave and wind effects were the main source for ambient noise, varying up to 25 dB. Ambient noise was strongly influenced by wave at lower frequency and by wind at higher frequency up to over 1 kHz. The higher frequency range over 10 kHz was influenced by rainfall and biological sources, and the spectrum was measured about 10 dB higher than the peak spectrum level from Wenz curve at this frequency range.

An Economic Assessment of Large-scale Battery Energy Storage Systems in the Energy-Shift Application to Korea Power System (장주기 대용량 전력저장장치의 부하이전에 대한 실계통 적용 경제성 평가 연구)

  • Park, Jong-Bae;Park, Yong-Gi;Roh, Jae-Hyung;Chang, Byung-Hoon;Toon, Yong-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.384-392
    • /
    • 2015
  • This paper presents an economic assessment of large-scale Li-ion battery energy storage systems applied to Korean power system. There are many applications of the battery energy storage systems (BESSs) and they can provide various benefits to power systems. We consider BESSs to the energy time-shift application to Korean power system and evaluate the benefits from the application of BESS in the social perspective. The mixed integer programming (MIP) algorithm is used to resolve the optimal operation schedule of the BESS. The social benefits can include the savings of the fuel cost from generating units, deferral effects of the generation capacity, delay of transmission and distribution infra construction, and incremental CO2 emission cost impacts, etc. The economic evaluation of the BESS is separately applied into Korean power systems of the Main-land and Jeju island to reflect the differences of the load and generation patterns.

Daily Operating Characteristics of Desalination System with Solar Energy (태양에너지 해수담수화 시스템 일일 운전 특성)

  • Kwak, Hee-Youl;Joo, Hong-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.262-265
    • /
    • 2009
  • This study was carried out to evaluate the clear day operating performances for the decentralized desalination system with the solar thermal system and the photovoltaic power system. In a clear day, we used a solar thermal system as heat source of the single-stage fresh water generator with plate-type heat exchangers and a photovoltaic power system as electric source for hydraulic pumps. The demonstration system generation was designed and installed at Jeju-island in 2006. The system was comprised of the desalination unit with daily fresh water capacity designed as $2m^3$, a $120m^3$ evacuated tubular solar collector to supply the heat, a $6m^3$ heat storage tank, and a 5.2kW photovoltaic power generation to supply the electricity of hydraulic pumps for the heat medium fluids. In a clear day, solar irradiance daily averaged was measured $518W/m^3$, the daily fresh water yield showed that about 565 liter.

  • PDF

Capacity Credit and Reasonable ESS Evaluation of Power System Including WTG combined with Battery Energy Storage System (에너지저장장치와 결합한 WTG를 포함하는 전력계통의 Capacity Credit 평가 및 ESS 적정규모 평가방안)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.923-933
    • /
    • 2016
  • This paper proposes a new method for evaluating Effective Load Carrying Capability(ELCC) and capacity credit(C.C.) of power system including Wind Turbine Generator(WTG) combined with Battery Energy Storage System(BESS). WTG can only generate electricity power when the fuel(wind) is available. Because of fluctuation of wind speed, WTG generates intermittent power. In view point of reliability of power system, intermittent power of WTG is similar with probabilistic characteristics based on power on-off due to mechanical availability of conventional generator. Therefore, high penetration of WTG will occur difficulties in power operation. The high penetration of numerous and large capacity WTG can make risk to power system adequacy, quality and stability. Therefore, the penetration of WTG is limited in the world. In recent, it is expected that BESS installed at wind farms may smooth the wind power fluctuation. This study develops a new method to assess how much is penetration of WTG able to extended when Wind Turbine Generator(WTG) is combined with Battery Energy Storage System(BESS). In this paper, the assessment equation of capacity credit of WTG combined with BESS is formulated newly. The simulation program, is called GNRL_ESS, is developed in this study. This paper demonstrates a various case studies of ELCC and capacity credit(C.C.) of power system containing WTG combined with BESS using model system as similar as Jeju island power system. The case studies demonstrate that not only reasonable BESS capacity for a WTG but also permissible penetration percent of WTG combined with BESS and reasonable WTG capacity for a BESS can be decided.

Modeling and Analysis of Wind Turbine Generating System at Haeng-Won in Jeju Island (제주 행원 풍력발전 시스템의 모델링 및 해석)

  • Jeon Young-Jin;Kim Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.563-566
    • /
    • 2002
  • This paper presents the modeling and analysis of wind turbine generating system(WTGS) using doubly fed induction machine as a generator Generally, wind turbine generating system is composed of complicated machinery. So it is very difficult to present the mathematic model. This means that WTGS has a nonlinear system. Using the real output data from the WTGS for one year, it is simply possible to express the rotor and gear coupling system as a torque generator according to wind speed. Also, the modeling of electrical system can be able to present using the data sheet from the company. To analyze the proposed method, computer simulation using Psim program are presented to support the discussion.

  • PDF

Design and Field Test of Automatic Data Logger System for Portable Magnetometer using Raspberry Pi

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Cho, Jinwoo;Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1389-1396
    • /
    • 2016
  • A monitoring system for a field magnetometer was configured with assistance of a Raspberry Pi as a data logger. The suggested geomagnetic system uses a semi-real-time data transmission module. The system consists of two parts: a field-observation part and a data-center part. The field-observation part comprises a Raspberry Pi, magnetometer, LTE router, and power source, while the data center part takes samples at the site. The collected magnetometer data are then sent to the data center through the LTE router. The newly designed monitoring system was deployed and checked in Jeju-do island, and found to operate stably. The suggested system is promising in that it is simple and cost saving, providing at least physical insight and knowledge on the complex natural phenomena.