• Title/Summary/Keyword: Jeju volcanic island

Search Result 159, Processing Time 0.024 seconds

Physical and Mechanical Characteristics of Basalts in Northwestern and Southeastern Jeju Island (제주도 북서부 및 남동부 현무암의 물리적 & 역학적 특성)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.41-52
    • /
    • 2015
  • Volcanic rocks in Jeju Island have vesicular structure caused by various environmental factors, and indicate the differences in geological and mechanical characteristics from region to region. In addition, the bedrock of Jeju Island shows stratified structure, that is, soft layers composed of pyroclastic rocks or cavities are irregularly developed between the basalt layers by several times of volcanic activity. In this study, various physical tests and unconfined compressive strength test were conducted for intact rocks sampled in northwestern onshore and offshore of Jeju Island. The results obtained in the tests were compared with the physical and mechanical characteristics of intact rocks sampled in southeastern offshore of Jeju Island. As a results, it was confirmed that the physical and mechanical characteristics of basalts sampled in northwestern Jeju Island were similar to those of basalts sampled in southeastern offshore of Jeju Island. In addition, it was possible to estimate approximate design parameters from the correlation of mechanical properties with physical properties of basalts in Jeju Island.

Composition and Genesis of Volcanic Ash Soils in Jeju Island I. Physico-Chemical and Macro-Micromorphological Properties (제주도 화산회사인의 특성 및 생성에 관한 연구. I. 이화학 및 형태학적 특성)

  • ;George Stoops
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 1988
  • The effect of soil forming factors on the pedogenesis of basaltic volcanic ash soils and the influence of allophane material on soil properties have been investigated on 5 chronosequence soils situated from at the near sea coast up to the foot slope of Mt. Halla in Jeju Island. Time seems to be the important soil forming factor which today differentiates soil of the Island. Songag and Donghong soils developed in lower elevations are older and somewhat less influenced by ash shower. However, soils developed at higher elevations, Pyeongdae and Heugag, are rather younger and strongly influence by the ash. It is also proved that the parent materials are very heterogeneous. They mainly are basaltic with some contamination of acidic volcanic ashes and continental aeolian deposits where a considerable amount of quartz encountered in most soils studied. Many physico-chemical properties of soil, such NaF pH, phosphate sorption power, pH and extractable acidity are parameters to differentiate andepts and non-andeptic soils.

  • PDF

Volcanic Caves in Jeju (제주도의 화산동굴)

  • Choi, Ji-Seok
    • Journal of the Speleological Society of Korea
    • /
    • no.84
    • /
    • pp.43-45
    • /
    • 2008
  • Jeju Island is formed by lava flow streams with the Mt. Halla in the center. The Mt. Halla‘s crater or other parasitic volcano produced lava flows creating lava plateau in this area. There are one thousand volcano caves in the world, and 50% of them are located in the west coast of United States. There are 186 volcano caves in Italy, 100 in Mt. Fuji, Japan, and 70 in Jeju Island. Jeju Island‘s east-west axis four sides are world-renown volcano zones with basalt strata that feature low viscosity and fluidity.

Estimation of Probable Precipitation considering Altitude in the Jeju Islands (제주도의 고도를 고려한 확률강우량 산정)

  • Ko, Jae-Wook;Yang, Sung-Kee;Jung, Woo-Yul;Yang, Se-Chang
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.595-603
    • /
    • 2014
  • Jeju Island, a volcanic island, is the region that shows the biggest rainfall and has a big elevation-specific deviation of precipitation, but Jeju Island River Maintenance Plan doesn't reflect the characteristics of Jeju Island as it only calculates probable precipitation from four weather stations with elevation less than 100m. Therefore, this study uses AWS observational data in four Jeju Island weather stations and other regions to calculate location-specific probable precipitation, review the elevation-probable precipitation correlation in southern and northern regions, and create a probable precipitation map for all regions of Jeju Island, in order to produce better outcomes. This study is expected to be the most basic data to establish a safe Jeju island from flood disaster in preparation for the future climate changes and widely used for Jejudo Basin Dimension Planning, River Maintenance Plan, Pre-Disaster Impact Review, etc.

Changes of Humus Types Affected by Application of Animal Manures Compostin Jeju Upland Soil (가축분 퇴비의 시용량에 따른 제주 밭토양의 부식의 형태별 함량 변화)

  • Hwang, Ki-Sung;Yoo, Bong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.364-369
    • /
    • 2005
  • In Jeju island, the southernmost island of Korea, the field soils are mostly consisted of volcanic and non-volcanic soils. Animal manures of 0, 50, 100, and 150 MT/ha were treated to analyse the humus content changes by application amounts and the soil types. The results are as follows; Humus distribution type was A in the most of the volcanic soils while a few soils was type B, and it was possible to confirm that the humus process has occurred in the soils. Most of the non-volcanic soils was Rp and B type, therefore, the humus content change pattern was different from the volcanic soils. The nitrate-nitrogen content and the humus content showed positive correlation of $R^2=0.5263$ in the volcanic soils, while that of non-volcanic soils was $R^2=0.524$. The carbon content and the humus content showed positive correlation of $R^2=0.469$ in the volcanic soils, while that of non-volcanic soils was $R^2=0.550$.

Physical Properties of Volcanic Rocks in Jeju-Ulleung Area as Aggregates (제주도 및 울릉도에서 산출되는 화산암의 골재로서의 물성 특징)

  • Byoung-Woon You;Chul-Seoung Baek;Kye-Young Joo
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources. The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock. Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas. Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte. By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (I), basalt (I), trachybasalt (II), basalt (II), trachybasalt (III, IV), trachyte, trachybasalt (V, VI), basalt (III), and trachybasalt (VII, VIII). The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock. Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity. Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area. Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate. Overall, Jeju Island showed better quality as aggregate. In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock. Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition. Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.

Composition and Genesis of Volcanic Ash Soils in Jeju Island, II. Mineralogy of Sand, Silt and Clay Fractions (제주도 화산회사인의 특성 및 생성에 관한 연구. II. 사, 미사, 점토의 광물학적 특성)

  • ;Rene Tavernier
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.40-47
    • /
    • 1988
  • Mineralogy of sand, silt and clay fractions from the five chronosequence soils of Jeju Island is studied with the X-ray, TEM and SEM techniques. Soils of Songag and Donghong situated at lower elevations are generally developed on relatively of ash or alluvial deposits and contain mainly ferromagnesian minerals and feldspars, with some quartz, mica and volcanic glass. Crystalline minerals are dominant in the clay fraction; halloysite and vermiculite are abundant but small amounts of allophane are present. Clay migration results in well developed ferrigargillan, Soils of Pyeongdae and Heugag located at higher elevations are developed on relatively young volcanic ash with some contamination of continental aeolian dust probably containing quartz which may be come from acid ash shower. The absence of clay illuivation is due to the dominance of allophane. This clay mineral is associated with some gibbsite, imogolite and halloysite.

  • PDF

Study of the Last Volcanic Activity on Historical Records on Jeju Island, Korea (고문헌에 기록된 제주도 최후기 화산활동에 관한 연구)

  • Ahn, Ung San
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.69-83
    • /
    • 2016
  • Radiocarbon and OSL ages of three monogenetic volcanoes inferred to be the last volcanoes on Jeju Island, Korea were determined to identify a volcano described in historical records. The results show that the ages of those volcanoes are roughly <3.8 ka (Songaksan), >4.5 ka (Biyangdo), and <6~7 ka (Ilchulbong). Though our efforts to make a positive match between historical records and volcano-chronological dating were not successful, we make a new suggestion in this paper that two historical records of volcanic activity in 1002 and 1007 A.D. could be interpreted to be the sequential volcanic events from a single monogenetic volcano. In addition, based on a volcanological reinterpretation of historical records, we infer that the volcano described therein is most likely Mt. Songaksan, in Daejeongeup, which had early phreatomagmatic and late magmatic activities after 3.8 ka ago. Furthermore, considering the geopolitical relationship between the Goryeo Dynasty and the Tamna Kingdom, in addition with the culture of the era, this study sheds new light on the possibility that there is a time gap between the actual eruptions and the historical recording of them by ancient people.

Cohesion and Internal Friction Angle Estimated from Brazilian Tensile Strength and Unconfined Compressive Strength of Volcanic Rocks in Jeju Island (제주도 화산암의 압열인장강도와 일축압축강도로부터 추정된 점착력과 내부마찰각)

  • Moon, Kyoungtae;Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.2
    • /
    • pp.17-28
    • /
    • 2020
  • With respect to the tensile strength of volcanic rocks in Jeju Island, a comparative study was conducted using the existing research results and the test results performed in this study. In addition, the characteristics and effectiveness of the cohesion and internal friction angle estimated from the Brazilian tensile strength and unconfined compressive strength of Jeju volcanic rocks were investigated. As results, the Brazilian tensile strength of Jeju volcanic rocks was closely related to absorption, and decreased exponentially as the absorption increased. It was confirmed that the internal friction angle was closely related to the ratio of unconfined compressive strength to Brazilian tensile strength (σc / σt), and increased logarithmically as the ratio of σc / σt increased. In addition, the ratios of σc / σt of Jeju volcanic rocks were in the range of 5~20 depending on the magnitude of internal friction angle. In the case of cohesion, it was closely related to the absorption and Brazilian tensile strength. The cohesion exponentially decreased as the absorption increased, such as the relation between the Brazilian tensile strength and absorption. It was confirmed that there was a linear relation between the cohesion and Brazilian tensile strength.

Characteristics of Volcanic Ash Soils (화산회토(火山灰土)의 특성(特性)에 관(關)하여)

  • Shin, Yong Hwa;Kim, Hyong Ok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.3
    • /
    • pp.113-119
    • /
    • 1975
  • Volcanic Ash Soils are widely distributed in Jeju island, and constitute the important upland soils which are either presently being cultivated or are suitable for reclaiming. The characteristics of Volcanic Ash Soils according to data made available by previous studies in Jeju and the outside of the country are as following: The most conspicuous mineralogical property is the presence of amorphous mineral colloids. The colloids have large and highly reactive surface to which the common physical and chemical properties are related. Soils are low in bulk density and higher both in porosity and permeability. Accumulation of humus in the upper part of soil is found in great quantity. Cation exchange capacity is high mainly due to high humus content, but the absorbing intensity of ammonium and potassium is weaker than that of crystalline clays. The phosphate absorption coefficient is extremely high and deficiency of minor element may occur both crops and animals. Soils are densely populated with actinomycetes and anaerobic bacteria. Nitrification and activity of urease are distinctly stronger than that of non-Volcanic Ash Soils.

  • PDF