• Title/Summary/Keyword: Jeju groundwater

Search Result 207, Processing Time 0.026 seconds

Analysis of Water Level Fluctuations according to Groundwater Development and Pumping Duration (지하수 개발 및 양수기간에 따른 수위 변동특성 분석)

  • Kim, Min-Chul;Yang, Sung-Kee;Lee, Jun-ho
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.135-146
    • /
    • 2016
  • This study analyzed fluctuations of ground water level of ground water wells developed in Seongsan watershed of Jeju Island until 2013 using MODFLOW, a numerical analysis model. Ground water level shows greater fluctuations from increase of pump capacity compared to the number of ground water wells. The development of ground water at the top of watershed was found to have direct influence on ground water level. Ground water wells developed until 2013 were used to continue pumping for 50 days, and ground water level of coastal region was reduced below 50% compared to the standard water level. In addition, the range of fluctuation of water level was large in the east coast region, which represents the direction of flow of ground water.

Vanadium Concentration of Jeju Groundwater and Development of Functional Green Tea Using the Concentrated Water (제주 지하수의 바나듐 농축과 농축수를 이용한 기능성 녹차 음료 개발)

  • Jeong, Jong-Woo;Gong, Seon-Yeong;Ju, Mi-Hyeon;Kim, Joo-Hye;Lee, Ho-Won;Kang, Chang-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.740-743
    • /
    • 2010
  • 미량의 바나듐을 함유하고 있는 제주도 지하수를 나노여과(nanofiltration) 공정을 이용하여 바나듐을 고농도로 농축하고, 그 농축수를 이용하여 기능성 녹차를 제조하였다. 원수와 4단, 6단 농축한 물의 바나듐 함량은 각각 10.4, 21.6 및 31.7ppb 이었다. 이 농축수들을 이용하여 녹차 제조를 한 결과 바나듐과 카테킨 함량이 감소함을 알 수 있었다. 녹차 추출 전후의 바나듐 함량 감소율은 여름녹차의 경우에는 36.3% - 40.8%, 가을녹차의 경우에는 22.4% - 41.4%이었다. 이는 녹차잎을 이용하여 녹차를 제조하는 과정에서 바나듐 성분이 녹찻잎으로 흡착된 것으로 보이며, 녹차의 카테킨 성분은 이온함량이 높은 물에서는 잘 용출되지 않는다는 것을 확인할 수 있었다.

  • PDF

제주도 동부 해안대수층에서의 수평 유향.유속 검층자료 해석

  • Kim Gu-Yeong;Seong Hyeon-Jeong;Kim Tae-Hui;Park Gi-Hwa;Park Yun-Seok;Go Gi-Won;Park Won-Bae;U Nam-Chil
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.271-275
    • /
    • 2005
  • The horizontal heat-pulse flowmeter was used to measure grounwater flow in volcanic rocks at sites in eastern part of Jeju Island, Korea. Three boreholes, Handong-1, Jongdal-1, and Susan-1, which are located at close distance from the coastline, were selected from the sea water intrusion monitoring wells. To evaluate the direction and velocity of the groundwater flow, 6 to 8 measuring points for each borehole were chosen. There are two major flow directions at Handong-1, which are toward north-east and south-east directions and velocity ranges from $2.2{\sim}3.0cm/hr\;and\;0.6{\sim}1.0cm/hr$, respectively. For Jongdal-1, two major flow directions were detected that are east and north-west and velocity ranges from $1.2{\sim}2.0cm/hr$. For Susan-1, major flow is toward east direction and the ,velocity ranges from $2.2{\sim}2.7cm/hr$ at depth $60{\sim}70m$,\;and\;0.8{\sim}0.9cm/hr$ at depth $70{\sim}80m$. In order to evaluate the tidal effect on groundwater flow, direction and velocity were measured at specific depth with time, At depth 57m of Susan-1, the velocity increased during the tidal variation, The flow direction and velocity varies with different depths, and they are also affected by tidal fluctuation. Thereafter, care must be taken when flow direction and velociy is estimated indirectly by using hydraulic head at monitoring wells.

  • PDF

Temporal and Spatial Variations of water Quality of the Coastal Saline Groundwaters in Jeju Island (제주도 염지하수 수질의 시공간적 변화)

  • 김성수;김대권;손팔원;이창훈;하동수
    • Journal of Aquaculture
    • /
    • v.16 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • We have investigated water quality of the coastal saline groundwaters utilized for fish farms in Jeju Island. The water quality investigation included the spatial observations for 75 fish farms during March-May, 1994 and the hi-monthly observations for both coastal saline groundwaters and seawaters at four fish farms from August 1994 to December 1995. Water temperature of the saline groundwaters ranged from 16 to 18$^{\circ}C$ over the study period. Salinity of the saline groundwaters varied between 20.60 ppt and 34.02 ppt, slightly lower than that of the coastal seawaters(26.47~34.53 ppt). This salinity variation must be associated with local precipitation conditions in Jeju Island. The oxygen saturation for most saline groundwater samples was lower than 80%, ranging from 24.7 to 89.8%. The COD and pH values for the saline groundwaters were similar to those for the coastal seawaters. The concentrations of DIP for the saline groundwaters varied between 0.021 mg/L and 0.121 mg/ L, and seasonal variation of DIP in the saline groundwater ranged from 0.014 to 0.077 mg/L, which were higher than that of the coastal seawaters(0.000~0.015 mg/L). Nitrate in the saline groundwaters accounted for more than 90% of the DIM. The maximum concentrations of ammonia, nitrite, nitrate and DIN in the saline groundwaters were 0.085, 0.012, 2.294 and 2.309 mg/L, respectively. These concentrations of the saline groundwaters were considerably lower than those affected culture organisms. Overall, the saline groundwaters utilized for fish farms in Jeju Island appear to maintain good waterquality for fish farms.

A Study on Geoelectrical Structure of Jeju Island Using 3D MT Inversion of 2D Profile Data (2차원 MT 자료의 3차원 역산을 통한 제주도 지전기구조 연구)

  • Choi, Ji-Hyang;Kim, Hee-Joon;Nam, Myung-Jin;Lee, Tae-Jong;Han, Nu-Ree;Lee, Seong-Kon;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.268-274
    • /
    • 2007
  • Traditional two-dimensional (2D) interpretation of magnetotelluric (MT) data utilizes only transverse magnetic (TM)-mode data, because 2D inversion of transverse electric (TE)-mode data results in spurious features when 3D structures exist in the subsurface. The application of a 3D inversion algorithm to a single MT profile can reduce contamination due to off-profile anomalies and help us to incorporate TE-mode data in the interpretation. In this study, we conduct 2D and 3D inversions of MT data observed along two lines in Jeju Island. First, we invert apparent resistivities and phases in the TM and TE modes separately. Then, we perform 2D joint inversion of both TM- and TE-mode data and 3D inversion of both Zxy- and Zyx-mode data corresponding to TE- and TM-mode data in 2D. The resistivity images derived from all four data show that the geoelectrical structure in Jeju Island is a three-layered earth with the resistive-conductive-resistive stratigraphy within a depth of 5 km. The 3D inversion does not produce clear anomalies in the reconstructed profile image, while all of 2D do. This attributed to the possibility that 2D inversion results are distorted by exiting off-profile 3D anomalies in Jeju. With 3D inversion of 2D profile MT data, we can deduce more reliable results that are not seriously distorted by off-profile 3D anomalies.

Feasibility Test for Hydraulic Conductivity Characterization of Small Basin-Scale Aquifers Based on Geostatistical Evolution Strategy Using Naturally Imposed Hydraulic Stress (자연 수리자극을 이용한 소유역 규모 대수층 수리전도도 특성화: 지구통계 진화전략 역산해석 기법의 적용 가능성 시험)

  • Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.87-97
    • /
    • 2020
  • In this study, the applicability of the geostatistical evolution strategy as an inverse analysis method of estimating hydraulic properties of small-scale basin was tested. The geostatistical evolution strategy is a type of data assimilation method that can effectively estimate aquifer hydraulic conductivity by combining a global optimization model of the evolution strategy and a local optimization model of the ensemble Kalman filtering. In the applicability test, the geometry, hydraulic boundary conditions, and the distribution of groundwater monitoring wells of Hanlim-Eup were employed. On the other hand, a synthetic hydraulic conductivity distribution was generated and used as the reference property for ease of estimation quality assessment. In the estimations, two different cases were tested where, in Case I, both groundwater levels and hydraulic conductivity measurements were assumed to be available, and only the groundwater levels were available, in Case II. In both cases, the reference and estimated hydraulic conductivity fields were found to show reasonable similarity, even though the prior information for estimation was not accurate. The ability to estimate hydraulic conductivity without accurate prior information suggests that this method can be used effectively to estimate mathematical properties in real-world cases, many of which little prior information is available for the aquifer conditions.

Estimation of Long-term Groundwater Recharge Considering Land-Cover Condition & Rainfall Condition (Focusing on Seogwipo) (토지피복 상태와 강수조건을 고려한 장기 지하수함양량 추정 (서귀포시 지역을 중심으로))

  • Ahn, Seungseop;Lee, Sangil;Oh, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.39-47
    • /
    • 2012
  • Six land use data for a total of twenty five years were reviewed from 1975 to 2000 by dividing the period by 5-year unit; the land use variation was schematized; the watershed hydrological parameters were extracted by the representative rainfall years(maximum, average, driest year) by analyzing the recent thirty years'(from 1980 to 2010) climate data of the study region with SWAT model to investigate the effect of the precipitation change on the characteristics of groundwater recharge. In addition Markov Chain model was used to estimate the future land use; the predicted land use was applied to study the effect of the land use variation on the characteristics of groundwater recharge. For the research of this, long-term characteristics of groundwater recharge were estimated for the study region; the obtained results can be described as follows. The study region was divided into typical three area using SWAT model; yearly land use conditions were applied to the meteorological data of 1975 to 2010 and analyzed, producing the average rate of groundwater recharge of 30% for the applied period. This number is way lower than that of the earlier studies on the groundwater recharge for Jeju Island, which is 40-50%. Thirty percent (30%) is low considering the geological characteristics of Jeju, water-permeable vesicular strata, the reason of which must be the type of development is non-permeable paving.

The temporal and spacial distribution of stable isotope compositions of precipitation in Jeju Island : applicability to groundwater recharge study (제주도 강수의 동위원소 조성의 시공간적 분포 : 지하수 함양에의 응용)

  • 이광식;고동찬;이대하;박원배
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.133-136
    • /
    • 2002
  • 제주도에 내리는 강수의 동위원소 조성의 시공간적인 분포를 파악하고 지하수 함양과의 관련성을 연구하기 위하여, 한라산의 남측과 북측 사면에 8개의 강수채수기를 설치하여 1년 동안 (2000. 9 ~ 2001. 8) 월강수를 채취하였다. 연구기간 동안에 강수량은 남쪽사면이 북쪽사면보다 약 37% 더 많았다. 강수의 산소동위원소 조성은 온도효과를 거의 보이지 않았다. 그러나 여름 강우에는 우량효과가 매우 뚜렷하였다. 고도가 높아지면서 강수의 동위원소 조성이 낮아지는 고도효과가 남측과 북측사면에서 모두 뚜렷이 관찰되었다. 가중평균값으로 볼 때 북측사면 강수의 동위원소 조성이 남측사면 강수보다 약 0.5$^{0}$ $_{00}$ 낮은 것이 관찰되었는데 이는 비그늘효과(rain shadow effect) 때문인 것으로 해석된다. 다른 지역에 비하여 북부지역 지하수 동위원소 조성이 상대적으로 결핍되어 있는 것은 기존 연구 결과처럼 지하수 이동속도가 빠르기 때문에 일어나는 현상이 아니고 지하수로 함양된 강수의 원래의 동위원소 조성을 반영하기 때문인 것으로 해석된다.다.

  • PDF

제주도 서부지역의 지하수 오염취약성 작성 연구

  • Lee Yong-Du;Song Hui-Gyeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.316-318
    • /
    • 2006
  • The purpose of this research is to write out vulnerability for western area in Jeju island by using drastic method which is the most frequently utilized among the writing techniques of underground water vulnerability. In case of aquifer, it was divided into two types, gravel layer or not and rated. And soil media was rated two kinds of method. Plan 1 is concerned with only soil class and plan 2 is concerned with soil class and gravels (or rocks), Vadose zone was rated differently according to the ratio of gravel layer. In case of plan 1, the scope of drastic index is from the minimum 77 to the maximum 176, on the other hand, plan 2, the scope of drastic index is from the minimum 79 to the maximum 182. In case of using the water quality data of Nitrate from 1994 to 2004, Pearson correlation coefficient are 0.164(Plan 1) and 0.124(Plan 2) and Spearman correlation coefficient are 0.132(Plan 1) and 0.113.

  • PDF

Groundwater Level Responses due to Moderate·Small Magnitude Earthquakes Using 1Hz groundwater Data (1Hz 지하수 데이터를 활용한 중·소규모 지진으로 인한 지하수위 반응)

  • Gahyeon Lee;Jae Min Lee;Dongkyu Park;Dong-Hun Kim;Jaehoon Jung;Soo-Hyoung Lee
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.4
    • /
    • pp.32-43
    • /
    • 2024
  • Recently, numerous earthquakes have caused significant casualties and property damage worldwide, including major events in 2023 (Türkiye, M7.8; Morocco, M6.8) and 2024 (Noto Peninsula, Japan, M7.6; Taiwan, M7.4). In South Korea, the frequency of detectable and noticeable earthquakes has been gradually increasing since the M5.8 Gyeongju Earthquake. Notable recent events include those in Jeju (M4.9), Goesan (M4.1), the East Sea (M4.5), and Gyeongju (M4.0) since 2020. This study, for the first time in South Korea, monitored groundwater levels and temperatures at a 1Hz frequency to observe the responses in groundwater to moderate and small earthquakes primarily occurring within the country. Between April 23, 2023, and May 22, 2023, 17 earthquakes were reported in the East Sea region with magnitudes ranging from M2.0 to M4.5. Analysis of groundwater level responses at the Gangneung observation station revealed fluctuations associated with five of these events. The 1Hz observation data clearly showed groundwater level changes even for small earthquakes, indicating that groundwater is highly sensitive to the frequent small earthquakes recently occurring in South Korea. The analysis confirmed that the maximum amplitude of groundwater level changes due to earthquakes is proportional to the earthquake's magnitude and the distance from the epicenter. These findings highlight the importance of precise 1Hz-level observations in earthquake-groundwater research. This study provides foundational data for earthquake monitoring and prediction and emphasizes the need for ongoing research into monitoring the changes in groundwater parameters (such as aquifer characteristics, quantity/quality, and contaminant migration) induced by various magnitudes of earthquakes that may occur within the country in the future.