• 제목/요약/키워드: Jeju groundwater

검색결과 207건 처리시간 0.024초

제주도 지하수 유역의 적절성 평가와 수리학적 유역설정 (Hydraulic Watershed Classification and Analysis of Flow Characteristics of Groundwater on Jeju Island)

  • 김민철;양성기
    • 한국환경과학회지
    • /
    • 제28권4호
    • /
    • pp.423-433
    • /
    • 2019
  • This study was carried out to identify the problems of the underground watersheds on Jeju Island, and to establish the hydraulic groundwater basin to be used as basis for the analysis of the groundwater model. In order to evaluate the adequacy of the groundwater basin on Jeju Island, a correlation analysis between elevation and groundwater level was conducted using data from 125 observation wells. The analysis, conducted with an elevation step of 100 m, exhibited values of R2 in the range 0.1653-0.8011. No clear correlation was observed between elevation and groundwater level. In particular, the eastern and western areas showed an inverse proportionality between elevation and groundwater level. The Kriging technique was used to analyze the underground water level data and to define the equipotential lines for all areas of Jeju Island. Eight groundwater watersheds were delineated by considering the direction of groundwater flow, the positions of the observation wells, and the long and short axes of the watersheds.

제주도 대정유역의 수리전도도 적용에 따른 지하수 모델링 결과 평가 (Assessment of Groundwater Flow Modeling according to Hydraulic Conductivity Zonation in the Dae-jeong Watershed of Jeju Island)

  • 박재규;김민철;양성기;이준호;김용석
    • 한국환경과학회지
    • /
    • 제25권12호
    • /
    • pp.1727-1738
    • /
    • 2016
  • In this study, groundwater flow was analyzed targeting Dae-jeong watershed, which exhibited the largest variations of groundwater levels at the identical elevation points among the 16 watersheds of Jeju Island. The issues of the methods applied in practice were identified and improvement plans were suggested. This groundwater-flow estimates derived by applying hydraulic conductivity values onto zones of equal topographic ground level were found to be quite different from actual measured groundwater flow. Conversely, groundwater-flow estimates that utilized hydraulic conductivity values applied onto groundwater-level equipotential lines indicated relatively lesser divergences from actual measured groundwater flow. The reliabilities of the two approaches were assessed for 60 randomly selected points on DEM (digital elevation model) maps, The method using hydraulic conductivity values applied onto groundwater-level contours turned out to be the more reliable approach for the Dae-jeong watershed in Jeju Island.

지하수 모델을 이용한 제주도 지하수 유동특성 및 수리전도도 분석 (Analysis of Groundwater Flow Characterstics and Hydraulic Conductivity in Jeju Island Using Groundwater Model)

  • 김민철;양성기
    • 한국환경과학회지
    • /
    • 제28권12호
    • /
    • pp.1157-1169
    • /
    • 2019
  • We used numerical models to reliably analyze the groundwater flow and hydraulic conductivity on Jeju Island. To increase reliability, improvements were made to model application factors such as hydraulic watershed classification, groundwater recharge calculation by precipitation, hydraulic conduction calculation using the pilot point method, and expansion of the observed groundwater level. Analysis of groundwater flow showed that the model-calculated water level was similar to the observed value. However, the Seogwi and West Jeju watersheds showed large differences in groundwater level. These areas need to be analyzed by segmenting the distribution of the hydraulic conductivity. Analyzing the groundwater flow in a sub watershed showed that groundwater flow was similar to values from equipotential lines; therefore, the reliability of the analysis results could be improved. Estimation of hydraulic conductivity distribution according to the results of the groundwater flow simulation for all areas of Jeju Island showed hydraulic conductivity > 100 m/d in the coastal area and 1 - 45 m/d in the upstream area. Notably, hydraulic conductivity was 500 m/d or above in the lowlands of the eastern area, and it was relatively high in some northern and southern areas. Such characteristics were found to be related to distribution of the equipotential lines and type of groundwater occurrence.

물수지 분석법을 이용한 제주도 권역별 미래 농업용 지하수 공급 가능량 추정 (Estimation of Regional Future Agricultural Available Groundwater Supply in Jeju Island Using Water Balance Method)

  • 송성호;이규상;명우호;안중기;백진희;정차연
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권2호
    • /
    • pp.23-37
    • /
    • 2019
  • To evaluate the available groundwater supply to the agricultural water demand in the future with the climate change scenarios for 40 sub-regions in Jeju Island, groundwater recharge and the available groundwater supply were estimated using water balance analysis method. Groundwater recharge was calculated by subtracting the actual evapotranspiration and direct runoff from the total amount of water resources and available groundwater supply was set at 43.6% from the ratio of the sustainable groundwater capacity to the groundwater recharge. According to the RCP 4.5 scenario, the available groundwater supply to the agricultural water demand is estimated to be insufficient in 2020 and 2025, especially in the western and eastern regions of the island. However, such a water shortage problem is alleviated in 2030. When applying the RCP 8.5 scenario, available groundwater supply can't meet the water demand over the entire decade.

수리지질 특성을 고려한 제주도 서부 해안지역 용천의 유형 분류 (Classification of Spring Types in the Western Coastal Area of Jeju Island, Korea, Based on the Hydrogeological Characteristics)

  • 고창성;고은희;박원배;고기원
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권5호
    • /
    • pp.25-35
    • /
    • 2023
  • This study aimed to classify spring types based on the hydrogeological characteristics of springs in Yongsu-ri~Hamo-ri coastal area in western part of Jeju Island. The springs in study area can be broadly categorized into three groups: perched groundwatrer springs (soil type), perched groundwater springs (sediment type), and basal groundwater springs. The perched groundwater springs of soil type correspond to springs where groundwater seeps out from the perched aquifer formed in the soil layer due to the development of clayey Kosan Formation beneath the surface. Because of the low hydraulic conductivity of soil layer, the average of spring discharge is less than 1 m3/day. The quality of spring water is significantly influenced by agricultural activities, resulting in high nitrate nitrogen concentrations and electrical conductivity. While the perched groundwater springs (sediment type) of the Suwolbong Tuff, which are located in the upper part of Kosan Formation, exhibited relatively higher discharge rates, their water quality was similar to soil-type springs. Basal groundwater springs are located in the zone of basal groundwater, mostly near the coastline. This type of spring appears to discharge of up to 3,707 m3, and the salinity content varies with the tidal fluctuations, especially increasing significantly during dry seasons.

제주도 지하수위의 변화와 지하수 함양부피 (Variation of Groundwater Level and Recharge Volume in Jeju Island)

  • 박원배;김기표;이준호;문덕철;김수정;고기원;방성준;방익찬
    • 한국환경과학회지
    • /
    • 제20권7호
    • /
    • pp.857-872
    • /
    • 2011
  • The variation of groundwater level in Jeju Island is analyzed with the data of precipitation observed from 48 monitoring post and groundwater level observed from 84 monitoring wells during 2001 to 2009. The groundwater level rises in summer and falls in winter. The rise of groundwater level by precipitation is fast and small in the eastern region and slow and large in the western region. However, the speed of fall during the period of no rain is slower in the eastern region than in the western region. It tells that permeability is greater in the eastern region than in the western region. In this paper, we set up the base level of groundwater and calculate recharge volume between the base level and groundwater surface. During the period, the average recharge volume was $9.83{\times}10^9m^3$ and the maximum recharge volume was $2.667{\times}10^{10}m^3$ after the typhoon Nari. With these volume and the recharge masses obtained by applying the recharge ratio of 46.1%, estimated by Jeju Province (2003), the porous ratio over the whole Jeju Island is 16.8% in average and 4.6% in the case of maximum recharge volume just after typhoon Nari. A large difference in the two ratios is because that it takes time for groundwater permeated through the ground just after rain fall to fill up the empty porous part. Although the porous ratios over the whole Jeju Island obtained in this way has a large error, they give us the advantage to roughly estimate the amount of recharged groundwater mass directly from observing the groundwater level.

제주 서부 해안 지역 염지하수 특성 및 관정 개발에 관한 연구 (A Study on the Characteristics of Saline Groundwater and Its Well Development in the Western Coastal Area of Jeju Island)

  • 조은일;고택균;이민규;감상규
    • 한국환경과학회지
    • /
    • 제27권8호
    • /
    • pp.677-688
    • /
    • 2018
  • The purpose of this study was to minimize salt water intrusion into freshwater aquifers and limit the development of freshwater aquifers, by selecting an appropriate excavation depth of in the western coastal area of Jeju Island. The study site was mostly basaltic lava, which was mainly composed of trachy basalt. A vertical logging test was conducted to investigate the vertical distribution of the groundwater and saline groundwater interface in the study well. It was found that freshwater groundwater, saline groundwater, and freshwater groundwater are distributed from the surface to approximately 16 m, 16~50 m, and 50~60 m, below the ground, respectively. In order obtain saline groundwater and minimize the inflow of freshwater into this well, the drilling depth should be limited in the range of 16~50 m from the surface. Thus, saline groundwater well development should be carried out with reference to the measurement results, which depend on the drilling depth and EC (electrical conductivity) obtained with drilling apparatus for geology and ground handling.

제주도 지하수 관정 내 질산성질소 오염도 평가 (Evaluation of Nitrate Nitrogen Contamination Degree in Groundwater Wells, Jeju Island)

  • 송성호;황보동준;장기영;김진성;서상기;양원석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권4호
    • /
    • pp.8-19
    • /
    • 2021
  • In this study, the evaluation standard for nitrate nitrogen contamination degree (WELCUP) was established using six factors that influence the groundwater quality in Jeju Island. To do this, weightings, ranges, and ratings were assigned for each factor and the relative possibility of nitrate nitrogen contamination degree was evaluated using WELCUP index for each well. As a result of calculating the WELCUP index using groundwater quality data of 5,112 wells in Jeju Island for 27 years (1993-2019), all 61 wells with the WELCUP index value higher than 100 are distributed in Daejung and Hangyung watershed with relatively large area of farmland in Jeju Island. In particular, as the ratio of private wells is more than 64%, it is necessary that systematic management is needed for private wells in terms of nitrate nitrogen contamination. Consequently, based on the results of applying the WELCUP evaluation standard, it is necessary to select the prioritization of nitrate nitrogen contamination pathways project for groundwater wells in Jeju Island.

제주도 공공 농업용 지하수의 효율적 누수량 산정 연구 (Efficient Leakage Estimation of Public Agriculture Groundwater in Jeju Island)

  • 김민철;박원배;강봉래;김지명
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권3호
    • /
    • pp.1-11
    • /
    • 2020
  • In this study, leakage ratios of Jeju Island's public agricultural groundwater were calculated by utilizing field measurements of groundwater level and surface reservoir water level. The average leakage ratios were 75.6% at groundwater well A and 57.5% at well B, with the ratio inversely proportional to agricultural water usage. The level of agricultural reservoirs varied at constant intervals at night, and the amount of water leakage associated with the variation was estimated as 0.1 - 16.3 ㎥/h. The leakage ratio was also influenced by pipeline length, average slope, and number of farmhouses. Currently, the estimation of agricultural water leakage on Jeju Island is based upon field inspection which is very labor- and cost intensive. The leakage ratio estimated by monitoring the reservoirs associated with the well A and B were 73.3 and 54.7%, respectively, consistent with the values obtained by field measurements.

제주도 성산유역의 저투수층 구조에 따른 지하수 흐름 분석 (Analysis on Groundwater Flow According to Low Permeable Layer Structure over Seongsan Watershed of Jeju Island)

  • 김민철;양성기;오승태
    • 한국환경과학회지
    • /
    • 제24권4호
    • /
    • pp.449-459
    • /
    • 2015
  • The depth of low permeable layer in Jeju Island was analyzed using the geologic columnar section data. The highest low permeable layer was found in center of Mt. Halla and the deepest area was in eastern part of Jeju Island. The study area, Seongsan watershed, is located in the eastern part of Jeju where the low permeable layer showing deep in a northward direction. Based on this analysis, the MODFLOW modeling was performed for groundwater flow of Seongsan watershed. The boundary of Seongsan watershed was set up as a no-flow and the modeling result showed the difference -0.26~0.62 m compared to the observed groundwater level. Meanwhile, MODFLOW model results considering low permeable layer showed -0.26~0.36 m differences compared to groundwater level and indicated more accurate than no-flow method result. Therefore, to interpret the groundwater flow over Seongsan watershed, comprehensive consideration including the low permeable layer distribution below the basalt layer is needed.