• Title/Summary/Keyword: Jatropha seed

Search Result 5, Processing Time 0.017 seconds

Development and Performance of a Jatropha Seed Shelling Machine Based on Seed Moisture Content

  • Aremu, A.K.;Adeniyi, A.O.;Fadele, O.K.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • Purpose: The high energy requirement of extraction of oil from jatropha seed and reduction of loss in oil content between whole seed and kernel of jatropha necessitate seed shelling. The purpose of this study is to develop and evaluate the performance of a jatropha seed shelling machine based on seed moisture content. Methods: A shelling machine was designed and constructed for jatropha seed. The components are frame, hopper, shelling chamber, concave, and blower with discharge units. The performance evaluation of the machine was carried out by determining parameters such as percentage of whole kernel recovered, percentage of broken kernel recovered, percentage of partially shelled seed, percentage of unshelled seed, machine capacity, machine efficiency, and shelling efficiency. All of the parameters were evaluated at five different moisture levels: 8.00%, 9.37%, 10.77%, 12.21%, and 13.68% w.b.). Results: The shelling efficiency of the machine increased with increase in seed moisture content; the percentage of whole kernel recovered and percentage of partially shelled seed decreased with increase in moisture content; and percentage of broken kernel, machine efficiency, and percentage of unshelled seed followed a sinusoidal trend with moisture content variation. Conclusion: The best operating condition for the shelling machine was at a moisture content of 8.00% w.b., at which the maximum percentage of whole kernel recovered was 23.23% at a shelling efficiency of 73.95%.

Antifungal Activities of Ethanolic Extract from Jatropha curcas Seed Cake

  • Saetae, Donlaporn;Suntornsuk, Worapot
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.319-324
    • /
    • 2010
  • Phorbol ester extraction was carried out from Jatropha curcas seed cake, a by-product from the biodiesel fuel industry. Four repeated extractions from 5 g of J. curcas seed cake using 15 ml of 90% (v/v) ethanol and a shaking speed of 150 rpm gave the highest yield of phorbol esters. The ethanolic extract of J. curcas seed cake showed antifungal activities against important fungal phytopathogens: Fusarium oxysporum, Pythium aphanidermatum, Lasiodiplodia theobromae, Curvularia lunata, Fusarium semitectum, Colletotrichum capsid, and Colletotrichum gloeosporioides. The extract contained phorbol esters mainly responsible for antifungal activities. The extract could therefore be used as an antifungal agent for agricultural applications.

Fast Pyrolysis Characteristics of Jatropha Curcas L. Seed Cake with Respect to Cone Angle of Spouted Bed Reactor (분사층 반응기의 원뿔각에 따른 Jatropha Curcas L. Seed Cake의 급속열분해 특성)

  • Park, Hoon Chae;Lee, Byeong-Kyu;Kim, Hyo Sung;Choi, Hang Seok
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • Several types of reactors have been used during the past decade to perform fast pyrolysis of biomass. Among the developed fast pyrolysis reactors, fluidized bed reactors have been widely used in the fast pyrolysis process. In recent years, experimental studies have been conducted on the characteristics of biomass fast pyrolysis in a spouted bed reactor. The fluidization characteristics of a spouted bed reactor are influenced by particle properties, fluid jet velocity, and the structure of the core and annulus. The geometry of the spouted bed reactor is the main factor determining the structure of the core and annulus. Accordingly, to optimize the design of a spouted bed reactor, it is necessary to study the pyrolysis characteristics of biomass. However, no detailed investigations have been made of the fast pyrolysis characteristics of biomass in accordance with the geometry of the spouted bed reactor. In this study, fast pyrolysis experiments using Jatropha curcas L. seed shell cake were conducted in a conical spouted bed reactor to study the effects of reaction temperature and reactor cone angle on the product yield and pyrolysis oil quality. The highest energy yield of pyrolysis oil obtained was 63.9% with a reaction temperature of $450^{\circ}C$ and reactor cone angle of $44^{\circ}$. The results showed that the reaction temperature and reactor cone angle affected the quality of the pyrolysis oil.

Efficient plant regeneration from immature embryo cultures of Jatropha curcas, a biodiesel plant

  • Varshney, Alok;Johnson, T. Sudhakar
    • Plant Biotechnology Reports
    • /
    • v.4 no.2
    • /
    • pp.139-148
    • /
    • 2010
  • Jatropha curcas L. (Physic nut) is a commercially important non-edible oil seed crop known for its use as an alternate source of biodiesel. In order to investigate the morphogenic potential of immature embryo, explants from four developmental stages were cultured on medium supplemented with combinations of auxins and cytokinins. It was found that the size of embryo is critical for the establishment of callus. Immature embryos (1.1-1.5 cm) obtained from the fruits 6 weeks after pollination showed a good response of morphogenic callus induction (85.7%) and subsequent plant regeneration (70%) with the maximum number of plantlets (4.7/explant) on Murashige and Skoog's (MS) medium supplemented with IBA (0.5 $mg\;l^{-1}$) and BA (1.0 $mg\;l^{-1}$). The above medium when supplemented with growth adjuvants such as 100 $mg\;l^{-1}$ casein hydrolysate + 200 $mg\;l^{-1}$ L-glutamine + 8.0 $mg\;l^{-1}$ $CuSO_4$ resulted in an even higher frequency of callus induction (100%). Plant regeneration (90%) with the maximum number of plantlets (10/explant) was achieved on MS medium supplemented with 500 $mg\;l^{-1}$ polyvinyl pyrrolidone + 30 $mg\;l^{-1}$ citric acid + 1 $mg\;l^{-1}$ BA + 0.5 $mg\;l^{-1}$ Kn + 0.25 $mg\;l^{-1}$ IBA. It was observed that plantlet regeneration could occur either through organogenesis of morphogenic callus or via multiplication of pre-existing meristem in immature embryos. The age of immature embryos and addition of a combination of growth adjuvants to the culture medium appear to be critical for obtaining high regeneration rates. Well-developed shoots rooted on half-halfstrength MS medium supplemented with 0.5 $mg\;l^{-1}$ IBA and 342 $mg\;l^{-1}$ trehalose. The rooted plants after acclimatization were successfully transferred to the field in different agro-climatic zones in India. This protocol has been successfully evaluated on five elite lines of J. curcas.

Plant Toxins and Detoxification Methods to Improve Feed Quality of Tropical Seeds - Review -

  • Makkar, H.P.S.;Becker, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.467-480
    • /
    • 1999
  • Many antinutritional and toxic factors abound in tropical seeds, which are also generally rich in nutrients and therefore more prone to attack from herbivores. Antinutritional and toxic factors are considered to defend seeds against environmental vagaries and thus help to protect them. These factors though good for the plant, cause deleterious effects or are even toxic to animals and man. The conventional seeds cultivated for oil or non-oil purposes, and general aspects of antinutritional factors are not presented here as these have already been discussed widely by many workers. Deficits in conventional protein and energy sources in the tropics have stimulated a quest for alternative feeds both for animals and humans. This article attempts to highlight two new oilseed crops, Jatropha curcas and Moringa oleifera, and in addition deals with some under-utilized seeds with potential as animal feed. Most of these seed plants are adapted to various marginal growing conditions in the tropics and can help to mitigate the prevailing deficit in protein and energy sources. Antinutritional and toxic factors in seed or seed meal, various approaches to detoxify seed meal, and future research and development priorities for their exploitation as animal feeds are presented.