• Title/Summary/Keyword: Jar

Search Result 841, Processing Time 0.035 seconds

Medium Optimization for Fibrinolytic Enzyme Production by Bacillus subtilis MG410 Isolated (Bacillus subtilis MG410에 의한 Fibrin 분해효소 생산배지의 최적화)

  • Lee Ju-Youn;Paek Nam-Soo;Kim Young-Man
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.1
    • /
    • pp.39-47
    • /
    • 2005
  • Using the bacteria isolated from Chungkookjang, Bacillus sublilis MG410 which is excellent in fibrinolytic enzyme activity was isolated. In increase the high production of fibrinolytic enzyme from Bacillus sublilis MG410, the effect of various carbon sources, nitrogen sources, inorganic sources, the initial pH of medium were investigated. The most effective carbon and nitrogen sources were founded cellobiose 0.5%(w/v) and soybean meal 2%(w/v) respectively. None of inorganic sources examined had any detectable stimulating effect on fibrinolytic enzyme production except Na₂HPO₄·12H₂O. The initial optimum pH for fibrinolytic enzyme production ranged from 5∼6 and agitation speed was effect at 150rpm. In jar fermentor experiments under optimal culture conditions, the activity of fibrinolytic enzyme reached about 5.050 unit after 48hours.

Isolation and Structural Determination of Anti-Helicobacter pylori Compound from Fungus 60686. (곰팡이에서 분리한 Helicobacter pylori 항균물질의 분리 및 구조규명)

  • 남궁준;연승우;백남수;김태한;김영호;김창진;김기원
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.137-142
    • /
    • 1998
  • Helicobacter pylori is a Gram-negative bacterium which causes chronic gastritis and is associated with gastric ulcer, duodenal ulcer and gastric carcinoma. In the process of screening of antibacterial activities against H. pylori from soil microorganisms, fungus No. 60686 was isolated. After fermentation of No.60686, the antibacterial compound was isolated, purified and followed by extraction of mycelium with organic solvents, acetone and ethyl acetate, through silica gel chromatography, LH-20 gel chromatography and HPLC. As a result of the structural analyses of the compound by IR, $^1$H- and $^{13}$C-NMR, FAB/Mass spectrophotometer, the compound having the antimicrobial activity was identified as chaetoglobosin A ($C_{32}H_{36}N_2O_5$), a cytochalasan derivative. The antimicrobial activity of chaetoglobosin A was tested against Gram-positive and negative bacteria by paper disk method. Among the test strains of 9 Gram-positive bacteria and 18 Gram-negative bacteria containing 4 H. pylori strains, the growth of 4 H. pylori strains and 3 S. aureus strains (SG 511, 285 and 503) was only inhibited by chaetoglobosin A. Also it was shown that its growth inhibition against H. pylori strains was stronger than that against S. aureus strains at the treatment of the same concentration. Therefore it was concluded that chaetoglobosin A has a specific growth inhibition against H. pylori of the tested bacteria.

  • PDF

Enhanced total phosphorus removal using a novel membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation (유입흐름 변경 및 전응집 기반 이단응집 제어 적용 MBR을 통한 총인처리 개선 연구)

  • Cha, Jaehwan;Shin, Kyung-Suk;Park, Seung-Kook;Shin, Jung-Hun;Kim, Byung-Goon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.103-114
    • /
    • 2017
  • A membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation was evaluated in terms of phosphorus removal efficiency and cost-savings. The MBR consisted of two identical alternative reaction tanks, followed by aerobic, anoxic and membrane tanks, where the wastewater and the internal return sludge alternatively flowed into each alternative reaction tank at every 2 hours. In the batch-operated alternative reaction tank, the initial concentration of nitrate rapidly decreased from 2.3 to 0.4 mg/L for only 20 minutes after stopping the inflow, followed by substantial release of phosphorus up to 4 mg/L under anaerobic condition. Jar test showed that the minimum alum doses to reduce the initial $PO_4$-P below 0.2 mg/L were 2 and 9 mol-Al/mol-P in the wastewater and the activated sludge from the membrane tank, respectively. It implies that a pre-coagulation in influent is more cost-efficient for phosphorus removal than the coagulation in the bioreactor. On the result of NUR test, there were little difference in terms of denitrification rate and contents of readily biodegradable COD between raw wastewater and pre-coagulated wastewater. When adding alum into the aerobic tank, alum doses above 26 mg/L as $Al_2O_3$ caused inhibitory effects on ammonia oxidation. Using the two-stage coagulation control based on pre-coagulation, the P concentration in the MBR effluent was kept below 0.2 mg/L with the alum of 2.7 mg/L as $Al_2O_3$, which was much lower than 5.1~7.4 mg/L as $Al_2O_3$ required for typical wastewater treatment plants. During the long-term operation of MBR, there was no change of the TMP increase rate before and after alum addition.

Effects of Carbon and Nitrogen Sources on Immunosuppressant Mycophenolic Acid Fermentation by Penicillium brevi-compactum (Penicillium brevi-compactum을 이용한 면역억제제 Mycophenolic Acid 발효에서 탄소원 및 질소원의 영향)

  • Rho, Yong-Taek
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.249-254
    • /
    • 2011
  • Mycophenolic acid blocking the synthesis of xanthosine monophosphate is a nonnucleoside inhibitor of inosine monophosphate dehydrogenase. Therefore mycopholoic acid is a drug currently used as immunosuppressive agent in transplantation of heart, kidney and liver. Mycophenolic acid has been industrially produced through fermentation process by fungus Penicillium brevi-compactum. In this study, the profile of mycophenolic acid fermentation was observed in 5L-jar fermentor to investigate the utilization of carbon and nitrogen sources and the production of mycophenolic acid. It was investigated that what kind of carbon sources was better to cell growth and mycophenolic acid production. Fructose was the best carbon source for mycophenolic acid fermentation, but it is the most expensive one. Thereafter molasses containing sucrose as the supply source of fructose was confirmed to be the best carbon source for the industrial production. Use of molasses increased the fermentation yield of mycophenolic acid more than two times higher than glucose. It was confirmed that urea was the best inorganic nitrogen source, which did not give rise to sudden drop of culture pH. Addition of urea increased the fermentation yield of mycophenolic acid about 3.6 times higher than addition of ammonium nitrate as control. Casein, peptone and casamino acid originated from milk protein increased the fermentation yield of mycophenolic acid about 3.4 times higher than control. Peptone and casamino acid, which are casein hydrolysates, increased cell growth considerably as well.

Hepatoprotective Effect of Exo-polysaccharide Produced from Submerged Mycelial Culture of Ganoderma lucidum WK-003 by Using Industrial Grade Medium (산업용배지 사용에 의한 영지버섯 균주 WK-003균사체 액체 배양으로부터 생산된 세포외 다당체의 간 보호 효과)

  • Yang, Byung-Keun;Jeon, Yong-Jae;Jeong, Sang-Chul;Kim, Dong-Hyun;Ha, Ji-Young;Yun, Jong-Won;Shon, Dong-Hwan;Go, Geon-Il;Song, Chi-Hyun
    • The Korean Journal of Mycology
    • /
    • v.27 no.1 s.88
    • /
    • pp.82-86
    • /
    • 1999
  • The production of hepatoprotective exo-polysaccharide by using synthetic and industrial grade media of the submerged mycelial culture of Ganoderma lucidum WK-003 was compared. The optimum concentrations of molasses and corn steep liquor (industrial grade) for the production of exo-polysaccharide were 5% and 2.5%, respectively. The productions of the exo-polysaccharide by using a 5l jar fermenter with industrial grade medium and synthetic medium were 11.2 g D.W./l and 7.2g D.W./l, respectively. Glutamic pyruvic transaminase (GPT) activities in the serum of intoxicated Sprague-Dawley rats by oral administration of the exo-polysaccharide produced from the industrial grade and synthetic media for 4 consecutive days were decreased from 704 IU/L to 356IU/L and 704IU/L to 349IU/L, respectively.

  • PDF

Surgical Treatment of Superior Vena Cava Syndrome Caused by Hemodialysis Catheter - Report of 2 cases- (혈액 투석용 카테터에 의한 상대정맥증후군의 수술적 치료 -2예 보고-)

  • Cho Yang Hyun;Ryu Se Min;Kim Hyun Koo;Sim Jae Hoon;Kim Hark Jar;Choi Young Ho;Sohn Young-Sang
    • Journal of Chest Surgery
    • /
    • v.38 no.1 s.246
    • /
    • pp.67-71
    • /
    • 2005
  • The major etiology of superior vena cava (SVC) syndrome is malignancy. Radiologic endovascular intervention is the treatment of choice for patients with SVC syndrome due to malignant disease, which is unresponsive to radiation therapy and chemotherapy. However, it is not clear whether endovascular intervention can replace open surgery as the primary method of management of benign SVC syndrome. We report two cases of benign SVC syndrome resulting from dialysis catheters placed in the central veins. One patient underwent bypass surgery between innominate vein and right atrium by expanded polytetrafluoroethylene. Another patient had large thrombi in SVC and other central veins. We removed them under cardiopulmonary bypass to prevent pulmonary embolism, and SVC was repaired and augmented by autologous pericardium. Prompt symptomatic relief and angiographic improvements of collateral flow were achieved in both patients.

Analysis of Producing of Thermostable Alkaline Protease using Thermoactinomyces sp. E79 (Thermoactinomyces sp. E79를 이용한 내열성 Alkaline 단백질 분해효소 생산:환경인자의 영향)

  • 정상원;박성식;박용철;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.3
    • /
    • pp.167-171
    • /
    • 2000
  • Analysis of Production of Thermostable Alkaline Protease using Thermoactinomyces sp. E79. Jung, Sang Won, Sung-Sik Park, Yong-Cheol Park" Tae Kwang Oh2, and Jin-Ho Seo*, Department of Food Science and Technology, Seoul National University, Suwon 441-744, Korea, 1lnterdisciplinary program [or Biochemical Engineering & Biotechnology, Seoul National Univer5it}~ Seoul 151 "7421 Koreal 2Microbial Enzyme RU, Korea Research Institute of Bioscience & Biotechnology, Po. Box 1151 Yusong, Taejon 305"6001 Korea - This research was undertaken to analyze fermentation properties of Thermoactinomyces sp. E79 for production of a thermostable alkaline protease, which is able to specifically hydrolyze defatted soybean meal (DSM) to amino acids. TIle optimum pH for cell growth and protease production was pH 6.7, Thermoactinomyces sp. E79 did not grow at pHlO Among carbon sources tested, soluble starch was the best for protease production, while glucose repressed protease production. Tryptone was found to be the best nitrogen source for cell growth and soytone was good tor protease production. Oxygen transfer rate played an important role in producing thermostable alkaline protease. Ma'<..imum values of 6.58 glL of dry cell weight and 43.0 UJmL of protease activity were obtained in a batch fermentation using a 2.5 L jar fermentor at 1.93 X 102 hr-l of volumetric oxygen transfer coeff'jcient (kLa). Addition of 200 mgIL humic acid to the growth medium resulted in 1.64 times higher protease activity and 1.77 times higher cell growth than the case without humic acid addition.

  • PDF

Characterization of Endochitosanases-Producing Bacillus cereus P16

  • Jo, Yu-Young;Jo, Kyu-Jong;Jin, Yu-Lan;Jung, Woo-Jin;Kuk, Ju-Hee;Kim, Kil-Yong;Kim, Tae-Hwan;Park, Ro-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.960-968
    • /
    • 2003
  • A bacterial isolate showing a strong endochitosanase activity was isolated from soil and then characterized. The isolate was identified and designated as Bacillus cereus P16, based on morphological and biochemical properties, assimilation tests, cellular fatty acids pattern, along with 16S rRNA gene sequence. The optimized medium for producing extracellular chitosanase in a batch culture contained 1% tryptone, 0.5% chitosan, and 1% NaCl (pH 7.0). Powder chitosan and tryptone served the best as carbon and nitrogen sources, respectively, for the chitosanase production. Chitosanase activity was the highest when culture was completed at $37^{\circ}C$ among various temperatures ($20-42^{\circ}C$) tested in a shaking incubator (200 rpm). The levels of chitosanase activity in the culture fluid were 2.0 U/ml and 3.8 U/ml, respectively, when incubated in a flask for 60 h and in a jar fermenter for 24 h. The culture supernatant showed a strong liquefying activity on the soluble chitosan. The viscosity of 1% chitosan solution, that was incubated with the culture supernatant, was rapidly decreased, suggesting the secretion of endochitosanolytic enzymes by P16. The culture fluid revealed six endo-type chitosanase isozymes, two major (38 and 45 kD), and four minor (54, 65, 82, and 96 kD) forms by staining profile. The crude enzymes were very stable, and full activity was maintained for 4 weeks at $4^{\circ}C\;or\;-20^{\circ}C$ in the culture supernatant, suggesting a highly desirable stability rate for making an industrial application of the crude enzymes. The supernatant also cleaved the insoluble chitosan powder, but the hydrolysis rate was much lower. The enzymic degradation products of chitosan contained $(GlcN)_n$ (n=2-8). The concentration of chitosan in the reaction mixture of the crude enzyme affected the chitooligosaccharides composition of the hydrolysis products. When the higher concentration of chitosan was used, the higher degree of polymerized chitooligosaccharides were produced. By comparison with other commercial chitosanase preparations, P16 was indeed found to be a valuable enzyme source for industrial production of chitooligosaccharides from chitosan.

Production of L-Lactic Acid from Soluble Starch by Enterococcus sp. JA-27. (Enterococcus sp. JA-27에 의한 가용성 전분으로부터 L형 젖산의 생산)

  • 김경아;김미경;장경린;전홍기
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.250-256
    • /
    • 2003
  • Lactic acid bacteria with amylolytic and acid producing activities can ferment starch directly to lactic acid thereby producing a monomer for the production of biodegradable poly lactic acid (PLA). In this study, the strain producing L-lactic acid from soluble starch was isolated from Nuruk. The isolated strain was identified as Enterococcus sp. through its morphological, cultural, biochemical characteristics as well as the 16S rDNA sequence analysis, and named Enterococcus sp. JA-27. Enterococcus sp. JA-27 produced exclusively L-lactic acid from soluble starch as a carbon source. The optimal conditions for the maximum production of L-lactic acid from Enterococcus sp. JA-27 were 30 C, pH 8, 1.5 % soluble starch as a substrate and 3.5 % tryptone as a nitrogen source, 0.1 % $K_2$$HPO_4$, 0.04 % $MgSO_4$. $7H_2$O, 0.014 % $MnSO_4$$.$4$H_2O$, 0.004% $FeSO_4$$.$$7H_2$O. Batch and fed batch culture were carried out and the former was more effective. L-Lactic acid production in the optimum medium was significantly increased in a 7 L jar fermenter, where the maximum L-lactic acid concentration was 3 g/L. For the purification of lactic acid in fermented broth, two stage ionexchange column chromatographies were employed and finally identified by HPLC.

Application of Sulfuric Acid for Improving Coagulation Efficiency on the Down Stream of Nakdong River (낙동강 하류 원수의 응집효율 개선을 위한 황산의 적용)

  • Ryu, Dong-Chun;Bae, Eun-Young;Kim, Sang-Goo;Son, Hee-Jong;Song, Mi-Jeong;Kim, Young-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2059-2065
    • /
    • 2000
  • The purpose of this study is to improve coagulation efficiency by pre-treatment of high pH water using sulfuric acid. The common reason of pH increasing at down stream of Nakdong river is water blooming. The pH go above 9.0 during water blooming periods. The higher pH water demands more coagulant and pre-chlorine dosage than lower pH water for better coagulation condition. The DOC, THMFP, UV-254 after coagulation with the same coagulant dosage by pre-treatment from pH 9.2 down to 8.1 with sulfuric acid are 1.84mg/L, $51{\mu}g/L$ and $0.032cm^{-1}$, by pretreatment of chlorine are 2.09mg/L, $78{\mu}g/L$ and $0.030cm^{-1}$, by pre-treatment of sulfuric acid and chlorine are 2.14mg/L, $72{\mu}g/L$ and $0.031cm^{-1}$ respectively. Pretreatment with sulfuric acid can improve water quality and reduce coagulant demand.

  • PDF