• Title/Summary/Keyword: Japan Earthquake

Search Result 339, Processing Time 0.036 seconds

Linkage Between Catastrophic Disaster Recovery Plan and Regional Comprehensive plan in Japan - Focus on the Great East Japan Earthquake Case - (일본의 대규모재해 부흥계획과 지역종합계획과의 연계체계 연구 - 동일본 대지진 사례를 중심으로 -)

  • Kim, So-Yeon;Kim, Hag-Yeol
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.139-147
    • /
    • 2019
  • The purpose of this paper is to analyze the linkage between Si-Jeong-Chon (municipalities of Japan) catastrophic disaster recovery-regeneration plan (DRRP) and regional comprehensive plan (RCP), each of which was made after the Great East Japan Earthquake, and to make implications on establishment of a disaster recovery plan of Korea. In order to explore the relationship between the two plans, the DRRPs and RCPs of 30 municipalities are collected and categorized according to their characteristics. The results show that DRRPs of the municipalities are not always in a consistent form and contents because regulations and guidelines on DRRP are not definite and specific. The relationship between DRRP and RCP in terms of its form and contents can be divided into 3 categories; Reflective Type (RT), Complementary Type (CT), and Substitutive Type (ST). The 22 RT plans as the majority of those DRRPs appear to reflect the development strategies of municipalities' RCPs. Both 3 CT plans and 5 ST plans seem to be integrated with RCPs in some way. The plan in CT of a municipality supplements its RCP by adding some new strategies to its recovery section and the plan in ST of a municipality appears to replace its RCP. Finally the influential factors which are considered to determine linkage type are identified as remaining time which is legally required to re-establish its RCP, the extent of damage, and socioeconomic condition changes.

Earthquake Response Analysis at Port Island during the 1995 Hyogoken-nanbu Earthquake(Japan) (일본 한신 대지진에 있어서의 포트 아일랜드의 지진응답해석)

  • 황성춘
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.477-484
    • /
    • 2000
  • Earthquake response analyses are conducted for the investigation of the ground shaking during the 1995 Hyogoken-nambu earthquake. Port Island a man made island with about 8{{{{ KAPPA m^2 }} area is chosen for this purpose Because earthquake measurement with vertical array was conducted there. Strain dependent characteristics of soil can be modeled well into Hardin-Drnevich Model. Four analyses are conducted : total stress analysis by equivalent linear method non-linear method. and two effective stress analyses. All analyses except equivalent linear analysis show fairy good agreement with observed record mainly because the non-linear behavior of Holocene clay layer has predominant effect on the behavior of fill, However detailed investigation show that effective stress analyses give much better prediction than total stress analyses.

  • PDF

Generation of Artificial Earthquake Ground Motions using Nonstationary Random Process-Modification of Power Spectrum Compatible with Design Response Spectrum- (Nonstationary Random Process를 이용한 인공지진파 발생 -설계응답스펙트럼에 의한 파워스펙트럼의 조정-)

  • 김승훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.61-68
    • /
    • 1999
  • In the nonlinear dynamic structural analysis the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary modulation function and a power spectral density function to describe such non-stationary characteristics. Satio and Wen(1994) proposed a non-stationary stochastic process model to generate earthquake ground motions which are compatible with design reponse spectrum at sites in Japan. this paper shows the process to modify power spectrum compatible with target design response spectrum for generating of nonstationary artificial earthquake ground motions. Target reponse spectrum is chosen by ATC14 to calibrate the response spectrum according to a give recurrence period.

  • PDF

Part of Information and Communication by occurrence of the earthquake (지진이 발생했을 때의 정보통신의 역할)

  • Kim, Jong-Yun;Shin, Hyun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1171-1178
    • /
    • 2005
  • Those days, not only Many peoples are killed and the wounded by effective of earthquake sea wave in Indonesia, but also our country effected by earthquake in adjoining sea to japan. At this point, preparation to earthquake and the point of quickly communication by happened earthquake. For this reason perceptible observation post are making so quickly communication system to zone by effective range of earthquake, and develope than more quality observation tool, contribute to keep citizens property and life to a minimum by earthquake damaged.

  • PDF

Damages, Human Behaviour and Recovery of Urban Residents in the 2005 West off Fukuoka Earthquake

  • Murakami, H.
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.13-18
    • /
    • 2008
  • The 2005 west off Fukuoka earthquake with Mjma 7.0 occurred in the vicinity of Fukuoka city with 1.4 million populations, which had been regarded as rather seismically inactive in Japan. The strong motion records by K-net indicated PGV of 64 cm/s in Fukuoka city and some condominium buildings sustained extensive non-structural damages. In this study, we conducted a questionnaire survey for residents of 8 condominium buildings located in the downtown area of Fukuoka city after the earthquake. The results indicate that damaged nonstructural walls and distorted doors disrupted evacuation route for many occupants, and furniture and content damage on upper floors became severer resulting in higher rates of human casualty. Earthquake preparedness for indoor safety was raised after the earthquake, though further safety measures can be advised. In the phase of post-earthquake emergency and restoration period, residents' management organizations play important roles, so that neighborhood activities to promote communication networks are important in urban environment with aging population.

  • PDF

Analysis about Seismic Displacements Based on GPS for Management of Natural Disaster (자연재난 관리를 위한 GPS 기반의 지진재해 분석)

  • Park, Joon-Kyu;Yun, Hee-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.311-318
    • /
    • 2011
  • On March 11, 2011, an 9.0-magnitude earthquake occurred near the northeastem coast Japanese. It was the largest earthquake that hit Japan since the beginning of modern seismometry. The earthquake occurred 179km east of the Sendai, Miyagi Prefecture, leaving about 27,000 of people confirmed dead, injured or missing due to the earthquake and tsunami. In this study, crustal Deformation in Mizusawa, Tsukuba and Usuda station were calculated based on GPS data in IGS station of Japan. The observation data were processed by precise point positioning and relative-positioning method using on-line GPS data processing services and a high precision scientific GPS/GLONASS data processing software. The coseismic displacements in IGS stations before and after the earthquake were analyzed using kinematic precise point positioning method, and the crustal deformation of the areas before and after the earthquake were precisely calculated using the relative-positioning method. The results of the study calculated precise coordination that the RMSE is maximum ${\pm}0.003m$, respectively and showed that Mizusawa station moved 2.6m southeast by the earthquake.

Trend of recent earthquake activity of Korea and the monitoring system earthquake and tsunami in Korea (우리나라 최근 지진발생 현황과 지진 및 지진해일 감시체계)

  • 조영순
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.79-97
    • /
    • 2000
  • Trend of earthquake occurrence of Korea represents that the term from 1978 to 1982 may be called as "active period", the term from 1983 to 1991 is rather tranquil, and from 1992, the occurrence number is increasing greatly. Instrumental earthquake observation of Korea started in 1905 by Japan. It continued until 1943 and ceased then through social disorders such as the independence from Japan Empire and the civil war. After that the observation restarted in 1963 by the establishment the World Wide Standard Seismograph Network. And the fundamental earthquake observation period started in 1978 with the Hongsung earthquake event. KMA(Korea Meteorological Administration) has constructed and operated the 24-hour earthquake and tsunami monitoring system and it propels new construction project of the national seismographic network system. In the result of this project, KMA operates 27 seismic networks, 42 accelerator networks, seismic analyzing system, and sea level monitoring system now. It has the plan to enlarge these systems that 31 seismic networks and 75 accelerator networks until 2001.

  • PDF

Preliminary Study of the Tsunami Effect from the Great East Japan Earthquake using the World First Geostationary Ocean Color Imager (GOCI) (천리안 해색위성 GOCI를 이용한 일본 동부 지진해일 영향 연구)

  • Son, Young-Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.255-266
    • /
    • 2012
  • The enormous disaster (Friday nightmare) occurred at 14:46 (JST) (05:46 UTC) on 11 March 2011, officially named "the 2011 Tohoku Earthquake and Tsunami". To monitor the variations of the marine environment after the earthquake, we used chlorophyll and Rrs(555) of GOCI and MODIS ocean color satellite data during March ~ May 2011. Before the earthquake, chlorophyll and Rrs(555) were relatively low around the Sendai areas. After the earthquake;their concentration and intensity were suddenly increased along the coast and the water column was disturbed by the tsunami wave. The severe distortions influenced by the tsunami occurred at less than 30 m water depth and the variations in offshore were difficult to discern the effect of the tsunami. The disturbance by the tsunami was still remained in the terrestrial environment after one month. However the ocean environment returned to the former condition in almost two month later.